人教版九年级数学上学期期末复习课件_第1页
人教版九年级数学上学期期末复习课件_第2页
人教版九年级数学上学期期末复习课件_第3页
人教版九年级数学上学期期末复习课件_第4页
人教版九年级数学上学期期末复习课件_第5页
已阅读5页,还剩303页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版九年级数学上册期末复习人教版九年级数学上册期末复习1第一关知识要点说一说一元二次方程复习

第一关知识要点说一说一元二次方程复习2一元二次方程一元二次方程的定义一元二次方程的解法一元二次方程的应用方程两边都是整式ax²+bx+c=0(a0)本章知识结构只含有一个未知数未知数的最高次数是2配方法求根公式法直接开平方法因式分解法二次项系数为1,而一次项系数为偶数一元二次方程一元二次方程的定义一元二次方程的解法一元二次方程3第二关基础题目轮一轮第二关基础题目轮一轮4明辨是非判断下列方程是不是一元二次方程,若不是一元二次方程,请说明理由?1、(x-1)2=4

2、x2-2x=84、x2=y+1

5、x3-2x2=16、ax2+bx+c=13、x2+=1

×√√×××明辨是非判断下列方程是不是一元二次方程,若不是一元二次方522、若方程是关于x的一元二次方程,则m的值为

。3.若x=2是方程x2+ax-8=0的解,则a=

;24、写出一个根为5的一元二次方程

。1、若是关于x的一元二次方程则m

。≠-2填一填22、若方程3.若x=2是方程x2+ax-8=0的解,则a=6第三关典型例题显一显第三关典型例题显一显7用适当的方法解下列方程用适当的方法解下列方程8因式分解法:1.用因式分解法的条件是:方程左边能够分解为两个因式的积,而右边等于0的方程;2.形如:ax2+bx=o(即常数C=0).因式分解法的一般步骤:一移-----方程的右边=0;二分-----方程的左边因式分解;三化-----方程化为两个一元一次方程;四解-----写出方程两个解;因式分解法:1.用因式分解法的条件是:方程左边能够分解为两个9直接开平方法:1.用开平方法的条件是:缺少一次项的一元二次方程,用开平方法比较方便;2.形如:ax2+c=o(即没有一次项).

a(x+m)2=k直接开平方法:1.用开平方法的条件是:缺少一次项的一元二次方10配方法:用配方法的条件是:适应于任何一个一元二次方程,但是在没有特别要求的情况下,除了形如x2+2kx+c=0

用配方法外,一般不用;(即二次项系数为1,一次项系数是偶数。)配方法的一般步骤:一化----把二次项系数化为1(方程的两边同时除以二次项系数a)二移----把常数项移到方程的右边;三配----把方程的左边配成一个完全平方式;四开----利用开平方法求出原方程的两个解.★一化、二移、三配、四开、五解.配方法:用配方法的条件是:适应于任何一个一元二次方程,但是在11公式法:用公式法的条件是:适应于任何一个一元二次方程,先将方程化为一般形式,再求出b2-4ac的值,b2-4ac≥0则方程有实数根,b2-4ac<0则方程无实数根;方程根的情况与b2-4ac的值的关系:当b2-4ac>0

时,方程有两个不相等的实数根;当b2-4ac=0

时,方程有两个相等的实数根;当b2-4ac<0

时,方程没有实数根.公式法:用公式法的条件是:适应于任何一个一元二次方程,先将方12第四关反败为胜选一选第四关反败为胜选一选13已知方程x2+kx=-3

的一个根是-1,则k=

,另一根为______4x=-3已知方程x2+kx=-3

的一个根是-1,则146若a为方程的解,则的值为6若a为方程的解,则15解方程:解方程:16已知m为非负整数,且关于x的一元二次方程:有两个实数根,求m的值。说明:当二次项系数也含有待定的字母时,要注意二次项系数不能为0,还要注意题目中待定字母的取值范围.试一试已知m为非负整数,且关于x的一元二次方程:说明:当二次项系17当m为何值时,方程

认真做一做(1)有两个相等实根;(2)有两个不等实根;(3)有实根;(4)无实数根;(5)只有一个实数根;(6)有两个实数根。m-1≠0且Δ=0m-1≠0且Δ>0△≥0或者m-1=0△<0且m-1≠0m-1=0△≥0且m-1≠0当m为何值时,方程181.审清题意,弄清题中的已知量和未知量找出题中的等量关系。2.恰当地设出未知数,用未知数的代数式表示未知量。3.根据题中的等量关系列出方程。4.解方程得出方程的解。5.检验看方程的解是否符合题意。6.作答注意单位。列方程解应用题的解题过程。1.审清题意,弄清题中的已知量和未知量找出题中的等量关系19某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?主干支干支干……小分支小分支……小分支小分支…………xxx1解:设每个支干长出x个小分支,则1+x+x●x=91即解得,

x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小20甲公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年平均增长率为多少?增长率问题:甲公司前年缴税40万元,今年缴税48.4万元.增长率问题:21面积类应用题:如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?BADC墙面积类应用题:如图,利用一面墙(墙的长度不超过45m),用822如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的宽度都相等.水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽.如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的23两个数的差等于4,积等于45,求这两个数.数字问题:两个数的差等于4,积等于45,求这两个数.数字问题:24一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手.这次会议到会的人数是多少?握手问题:一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共25

某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?商场最多每天可赚多少钱?利润问题:某水果批发商场经销一种高档水果如果每千克盈利10元,每26ABCPQ(1)用含x的代数式表示BQ、PB的长度;(2)当为何值时,△PBQ为等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由。其它类型应用题:4.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止。连结PQ。设动点运动时间为x秒。ABCPQ(1)用含x的代数式表(2)当为何值时,△PBQ为27二次函数复习二次函数复习28一、二次函数概念形如y=ax2+bx+c(a,b,c是常数,a≠0)

的函数叫做二次函数其中二次项为ax2,一次项为bx,常数项c二次项的系数为a,一次项的系数为b,常数项c练习:1、y=-x²,y=2x²-2/x,y=100-5x²,y=3x²-2x³+5,其中是二次函数的有____个。2.当m_______时,函数y=(m+1)χ-2χ+1是二次函数?一、二次函数概念形如y=ax2+bx+c(a,b,c是常数29二.二次函数图象对称轴顶点坐标最值增减性y=ax2y=a(x+m)2y=a(x+m)2+ky=ax2+bx+cy=ax2+k顶点式一般式配方平移直线x=0直线x=-m直线x=-m(0,0)(-m,0)(-m,k)a>0当x=0,y最小=0a>0当x=-m,y最小=0a>0当x=-m,y最小=ka>0,x≤-m,y随x增大而减小

x≥-m,y随x增大而增大a>0,x≤-b/2a,y随x增大而减小

x≥-b/2a,y随x增大而增大二.二次函数图象对称轴顶点坐标最值增减性y=ax2y=a(x302.二次函数图象的画法顶点坐标与X轴的交点坐标与Y轴的交点坐标及它关于对称轴的对称点(,)(x1,0)(x2,0)(0,c)(,c)(,)x1x2Oxyc(,c)对称轴直线x=2.二次函数图象的画法顶点坐标与X轴的交点坐标与Y轴的交点坐31(1)y=2(x+2)2是由

平移

个单位得到(2)y=-2x2-2是由

平移

个单位得到(3)y=-2(x-2)2+3是由

平移

个单位,再向

平移

个单位得到(4)y=2x2+4x-5是由

平移

个单位,再向

平移

个单位得到(5)y=2x2向左平移2个单位,再向下平移3个单位得到函数解析式是

。y=2(x+2)2-3y=2x2左2y=-2x2下2y=-2x2右2上3y=2x2左1下7(1)y=2(x+2)2是由向平移32(6)已知二次函数y=x2-4x-5,求下列问题y=-2(x+1)2-8①开口方向②对称轴③顶点坐标③最值④怎样平移⑤x在什么范围,y随x增大而增大⑥与坐标轴的交点坐标⑧与x轴的交点坐标为A,B,与y轴的交点为C,则S∆ABC=

.⑨在抛物线上是否存在点P,使得S∆ABP是∆ABC面积的2倍,若存在,请求出点P的坐标,若不存在,请说明理由⑦当x为何值时,y>0(6)已知二次函数y=x2-4x-5,求下列问题y=-33(7)已知二次函数y=x2+bx+c的顶点坐标(1,-2),求b,c的值(8)已知二次函数y=x2+4x+c的顶点坐标在x轴上,求c的值(9)已知二次函数y=x2+4x+c的顶点坐标在直线y=2x+1上,求c的值(7)已知二次函数y=x2+bx+c的顶点坐标(1,-2),342、已知抛物线顶点坐标(m,k),通常设抛物线解析式为_______________3、已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________1、已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)y=a(x+m)2+k(a≠0)y=a(x-x1)(x-x2)

(a≠0)如何求抛物线解析式常用的三种方法一般式顶点式交点式或两根式4.公式法2、已知抛物线顶点坐标(m,k),通常设抛物线解析式为__351.已知一个二次函数的图象经过点(0,0),(1,﹣3),(2,﹣8)。如何求下列条件下的二次函数的解析式:3.已知二次函数的图象的对称轴是直线x=3,并且经过点(6,0),和(2,12)2.已知二次函数的图象的顶点坐标为(-2,-3),且图象过点(-3,-2)。4.矩形的周长为60,长为x,面积为y,则y关于x的函数关系式

。1.已知一个二次函数的图象经过点如何求下列条件下的二次函数的36如何判别a、b、c、b2-4ac,2a+b,a+b+c的符号(1)a的符号:由抛物线的开口方向确定开口向上a>0开口向下a<0(2)C的符号:由抛物线与y轴的交点位置确定.交点在x轴上方c>0交点在x轴下方c<0经过坐标原点c=0如何判别a、b、c、b2-4ac,2a+b,a+b+c的符号37(3)b的符号:由对称轴的位置确定对称轴在y轴左侧a、b同号对称轴在y轴右侧a、b异号对称轴是y轴b=0(4)b2-4ac的符号:由抛物线与x轴的交点个数确定与x轴有两个交点b2-4ac>0与x轴有一个交点b2-4ac=0与x轴无交点b2-4ac<0(3)b的符号:由对称轴的位置确定对称轴在y轴左侧a、b同号38(1)已知y=ax2+bx+c的图象如图所示,

a___0,b____0,c_____0,abc____0

b2-4ac_____0a+b+c_____0,a-b+c____0

4a-2b+c_____00-11-2<<<>>>>>(1)已知y=ax2+bx+c的图象如图所示,0-11-2<39xyOAxyOBxyOCxyOD(2)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()BxyOAxyOBxyOCxyOD(2)在同一直角坐标系中,一40xyO-11(3)已知y=ax2+bx+c的图象如图所示,则下列说法正确的是()Aabc>0Ba>0,b2-4ac<0C当x=1时,函数有最大值为-1D当x=1时,函数有最小值为-1xyO-11(3)已知y=ax2+bx+c的图象如图所示,则41利用二次函数的图象求一元二次方程的近似解1、根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()A、3<x<3.23B、3.23<x<3.24

C、3.24<x<3.25D、3.25<x<3.26x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09利用二次函数的图象求一元二次方程的近似解1、根据下列表格的421、函数y=ax2-ax+3x+1的图象与x轴有且只有一个交点,那么a的值和交点坐标分别为

。9或12、写出一个开口向下,对称轴是直线x=3,且与y轴交于(0,-2)的抛物线解析式。练一练1、函数y=ax2-ax+3x+1的图象与x轴有且只有一个交433、把抛物线y=-3x2绕着它的顶点旋转1800后所得的图象解析式是

。y=3x24、已知二次函数y=a(x-h)2+k的图象过原点,最小值是-8,且形状与抛物线y=0.5x2-3x-5的形状相同,其解析式为

。y=0.5(x-16)2-85、若x为任意实数,则二次函数y=x2+2x+3的函数值y的取值范围是

。y≥23、把抛物线y=-3x2绕着它的顶点旋转1800后所得的图象446、抛物线y=2x2-4x-1是由抛物线y=2x2-bx+c向左平移1个单位,再向下平移2个单位得到的,则b=

,c=

。7、已知抛物线y=2x2+bx+8的顶点在x轴上,则b=

。83±88、已知y=x2-(12-k)x+12,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,则k的值为

。106、抛物线y=2x2-4x-1是由抛物线y=2x2-bx+c45问题2这位同学身高1.7m,若在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?xyo1.如图,有一次,我班某同学在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离2.5m时,达到最大高度3.5m,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05m.

3.05

m2.5m3.5m问题1

建立如图所示的直角坐标系,求抛物线的解析式;4m综合应用(中考必考题)问题2这位同学身高1.7m,若在这次跳投中,球在头顶上方0462.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似的看为抛物线,如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米、2.5米处,绳子甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,请你算一算学生丁的身高。1m2.5m4m1m甲乙丙丁xyo(0,1)(4,1)(1,1.5)2.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似的看473.在矩形荒地ABCD中,AB=a,BC=b,(a>b>0),今在四边上分别选取E、F、G、H四点,且AE=AH=CF=CG=x,建一个花园,如何设计,可使花园面积最大?DCABGHFEabb3.在矩形荒地ABCD中,AB=a,BC=b,(a>b>484.(2014新疆生产建设兵团改编)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。

ABCD解:(1)∵AB为x米、篱笆长为24米

∴花圃宽为(24-4x)米

(3)∵墙的可用长度为8米(2)当x=时,S最大值==36(平方米)∴S=x(24-4x)=-4x2+24x(0<x<6)∴0<24-4x≤84≤x<6∴当x=4m时,S最大值=32平方米4.(2014新疆生产建设兵团改编)如图,在一面靠墙的空地495.某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万。该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,到第2年为6万元。(1)求y的解析式;(2)投产后,这个企业在第几年就能收回投资?解:(1)由题意,x=1时,y=2;x=2时,y=2+4=6,分别代入y=ax2+bx,得a+b=2,4a+2b=6,解得:a=1,b=1,

∴y=x2+x.(2)设g=33x-100-x2-x,则

g=-x2+32x-100=-(x-16)2+156.由于当1≤x≤16时,g随x的增大而增大,故当x=4时,即第4年可收回投资。5.某企业投资100万元引进一条产品加工生产线,若不计维修、506.某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?分析:利润=(每件商品所获利润)×

(销售件数)

设每个涨价x元,那么(3)销售量可以表示为(1)销售价可以表示为(50+x)元(x≥0,且为整数)(500-10x)

个(2)一个商品所获利润可以表示为(50+x-40)元(4)共获利润可以表示为(50+x-40)(500-10x)元6.某商场将进价40元一个的某种商品按50元一个售出时,能卖517.如图,已知直线y=-x+3与X轴、y轴分别交于点B、C,抛物线y=-x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点。

(1)求抛物线的解析式;解:令y=0,则–x+3=0,x=3,∴B(3,0),令x=0,则y=3,∴C(0,3),b=2c=3{解得-9+3b+c=0c=3{得∴y=-x2+2x+3(3,0)(0,3)xyoABC7.如图,已知直线y=-x+3与X轴、y轴分别交于点B527.如图,已知直线y=-x+3与X轴、y轴分别交于点B、C,抛物线y=-x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点。

(1)求抛物线的解析式;(2)若抛物线的顶点为D,求四边形ABDC的面积;(3,0)(0,3)BCDxyoAE(1,4)(1,0)(-1,0)解:S四边形ABDC=S△AOC+S梯形OEDC+S△EBD=9=AO·OC+(OC+ED)·OE+EB·ED=×1×3+×(3+4)×1+×3-1×47.如图,已知直线y=-x+3与X轴、y轴分别交于点B、537.如图,已知直线y=-x+3与X轴、y轴分别交于点B、C,抛物线y=-x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点。

(4)第(3)题改为在直线y=-x+3上是否存在点P,使S△PAC=S△PAB?若存在,求出点P的坐标;若不存在,说明理由。答案一样吗?(3,0)(0,3)xyoABCP(3)若点P在直线BC上且S△PAC=S△PAB,求P的坐标;Q7.如图,已知直线y=-x+3与X轴、y轴分别交于点B、54y(3,0)(0,3)xoABCPQP(3,0)(0,3)xyoABCQy(3,0)(0,3)xoABCPQP(3,0)(0,3)x55旋转旋转56这个定点称为旋转中心,转动的角称为旋转角。1、概念:在平面内,把一个图形绕着某一个定点转动一个角度的图形变换叫做旋转。(4)图形中的每一点都绕着旋转中心旋转同样大小的角度3、旋转的基本性质(1)图形的形状和大小都没有发生变化.(2)对应线段相等,对应角相等(3)对应点到旋转中心的距离相等2、图形旋转的三个要素:(1)旋转中心,(2)旋转方向(3)旋转角度这个定点称为旋转中心,转动的角称为旋转角。1、概念:在平面内574、把一个图形绕着某一点旋转180度,如果它能够和另一个图形重合,那么,我们就说这两个图关于这个点对称或中心对称,这个点就叫对称中心,这两个图形中的对应点,叫做关于中心的对称点.性质:

(1)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.(2)关于中心对称的两个图形是全等形。4、把一个图形绕着某一点旋转180度,如果它能够和585.中心对称图形的定义:把一个图形绕着某一点旋转1800,如果旋转后的图形能够和原来的图形相互重合,那么这个图形叫中心对称图形。5.中心对称图形的定义:把一个图形绕着某一点旋转18596.中心对称与中心对称图形是两个既有联系又有区别的概念

区别:中心对称指两个全等图形的相互位置关系中心对称图形指一个图形本身成中心对称联系:如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形

如果将中心对称图形,把对称的部分看成两个图形,则它们是关于中心对称。6.中心对称与中心对称图形是两个既有联系又有区别:中心607、两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P/(-x,-y).7、两个点关于原点对称时,它们的坐标符号相反,即点P(x,y61

如图,四边形AOBC,它绕O点旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)∠AOD与∠BOE有什么大小关系?练一练旋转中心是O点D和点E的位置AO=DO,BO=EO∠AOD=∠BOE∠AOD和∠BOE都是旋转角BACODEF如图,四边形AOBC,它绕O点旋转得621选择题:⑴下列图形中即是轴对称图形又是中心对称图形的是()A角B等边三角形C线段D平行四边形C(2)下列多边形中,是中心对称图形而不是轴对称图形的是()A平行四边形B矩形C菱形D正方形A(3)已知:下列命题中真命题的个数是()①关于中心对称的两个图形一定不全等②关于中心对称的两个图形是全等形③两个全等的图形一定关于中心对称A0B1C2D3B1选择题:C(2)下列多边形中,是中心对称图形而不是轴对631.右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()A.900B.600C.450D.300C2.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120˚,旋转二次得到右边的图形.乙OABCOA(C1)BA1(C2)B1B2C(A2)OABOABA3B3B1A1B2A2甲下列图形中,不能通过上述方式得到的是()(A)(B)(C)(D)D1.右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次643.以下四家银行行标中,轴对称图形的有

A.B.C.D.A4.下列说法正确的是()A.旋转改变图形的形状和大小B.平移改变图形的位置C.图形可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到B3.以下四家银行行标中,轴对称图形的有()

A655.下列图形中,是中心图形又是轴对称图形的有(1)平行四边形;②菱形;③矩形;④正方形;⑤等腰梯形;⑥线段;⑦角;(A)2个;(B)3个;(C)4个;(D)5个;6.请问以下三个图形中是轴对称图形的有

,是中心对称图形的有

。一石激起千层浪汽车方向盘铜钱5.下列图形中,是中心图形又是轴对称图形的有(1)平行四边667、如图,圆心角都是90度的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为()AOBDC7、如图,圆心角都是90度的扇形OAB与扇形OCD叠放在一起678、如图,P是正三角形ABC内一点,PA=6,PB=8,PC=10,若三角形PAC绕点A逆时针旋转后,得到三角形P/AB,则P与P/之间的距离为(),APB=()AP/PCB8、如图,P是正三角形ABC内一点,PA=6,PB=8,PC689、如图,三角形ABC是等腰直角三角形,CA=CB,四边形CDEF是正方形,连结AF、BD,求证:AF=BDFEDCAB9、如图,三角形ABC是等腰直角三角形,CA=CB,四边形C699.如图,在线段BD上取一点C,(BC≠CD)以BC,CD为边分别作正△ABC和正△ECD,连结AD交EC于点Q,连结BE交AC于点P,连结PQ,AD与BE交于点F,(1)图中哪些三角形可以通过旋转互相得到?(2)∠BFD等于多少度?(3)PQ∥BD吗?若是,说明理由?

9.如图,在线段BD上取一点C,(BC≠CD)以BC,CD为7010.如图,正方形ABCD中,M为BC边上的一点,且AM=DC+CM,N为DC的中点,试说明AN平分∠DAM10.如图,正方形ABCD中,M为BC边上的一点,且AM7111.如图,平面上有两个边长都为8㎝的正方形ABCD和正方形A1B1C1D1,且正方形A1B1C1D1的顶点A1为正方形ABCD的中心,当正方形A1B1C1D1绕点A1旋转时,计算图(3)中两个正方形重合的面积是多少?图2呢?计算图(1)中,两个正方形重合部分的面积,并说明为什么?图(1)ABCDA1D1C1B1ABCDA1B1C1D1ABCDA1B1C1D1图(2)图(3)11.如图,平面上有两个边长都为8㎝的正方形ABCD和正72例1:(2013云南普洱,17,6分)如图,方格纸中的每个小方格都是边长为1个单位的小正方形,每个小正方形的顶点称为格点.△ABC的顶点都在格点上,建立平面直角坐标系后,点A、B、C的坐标分别为(1,1),(4,2),(2,3).(1)画出△ABC向左平移4个单位,再向上平移1个单位后得到的△A1B1C1;(2)画出△ABC向关于原点O对称的△A2B2C2;(3)以点A、A1、A2为顶点的三角形的面积为

.例1:(2013云南普洱,17,6分)如图,方格纸中的每73人教版九年级数学上学期期末复习课件74例2(2013黑龙江,22,6分)如图,方格纸中每个小正方形的边长都是1个单位长度△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的A2B2C2,并求点B所经过的路径长.(结果保留π例2(2013黑龙江,22,6分)如图,方格纸中每个小正75人教版九年级数学上学期期末复习课件76例3、(2013福建龙岩,22,12分)如图①,在矩形ABCD中,AB=+1,AD=。(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D'处,压平折痕交CD于点E,则折痕AE的长为____________;(2)如图③,再将四边形BCED'向左翻折,压平后得四边形B'C'ED',B'C'交AE于点F,则四边形B'FED'的面积为____________;(3)如图④,将图②中的△AED'

绕点E顺时针旋转α角,得△A'ED'',使得EA'

恰好经过顶点B,求弧D'D''

的长。(结果保留π)例3、(2013福建龙岩,22,12分)如图①,在矩形ABC77人教版九年级数学上学期期末复习课件788、(2012•烟台)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为

.8、(2012•烟台)如图,在Rt△ABC中,∠C=90°,799、(2012,长沙)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.9、(2012,长沙)如图,已知正方形ABCD中,BE平分∠8010、(2012,襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN10、(2012,襄阳)如图,在△ABC中,AB=AC,A81圆复习圆复习82二、过三点的圆及外接圆1.过一点的圆有________个2.过两点的圆有_________个,这些圆的圆心的都在___________________________上.3.过三点的圆有______________个4.如何作过不在同一直线上的三点的圆(或三角形的外接圆、找外心、破镜重圆、到三个村庄距离相等)5.锐角三角形的外心在三角形____,直角三角形的外心在三角形____,钝角三角形的外心在三角形____。无数无数0或1内外连结着两点的线段的垂直平分线斜边上二、过三点的圆及外接圆1.过一点的圆有________个无数83ABCDFE..F.acbS△ABC=C△ABC·r内AD=AF=(b+c-a)BD=BE=(a+c-b)CE=CF=(a+b-c).三、三角形的内切圆ABCDAB+CD=AD+CBABCDFE..F.acbS△ABC=C△A841.已知△ABC外切于⊙O,(1)若AB=8,BC=6,AC=4,则AD=__;BE=__;CF=__;(2)若C△ABC=36,S△ABC=18,则r内=_____;(3)若BE=3,CE=2,△ABC的周长为18,则AB=____;S△ABC=C△ABC·r内184635171.已知△ABC外切于⊙O,(3)若BE=3,CE=2,△852.△ABC中,∠A=70°,⊙O截△ABC三条边所得的弦长相等.则∠BOC=____.A.140°B.135°C.130°D.125°EMNGFDBCAOPQR∠BOC=90°+∠AD3、边长分别为3,4,5的三角形的内切圆半径与外接圆半径的比为()A.1∶5B.2∶5C.3∶5D.4∶52.△ABC中,∠A=70°,⊙O截△ABC三条边所得的弦864.已知△ABC,AC=12,BC=5,AB=13。则△ABC的外接圆半径为

。内切圆半径____5.正三角形的边长为a,它的内切圆和外接圆的半径分别是______,____6.如图,直角坐标系中一条圆弧经过网格点

A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为

。4.已知△ABC,AC=12,BC=5,AB=13。则△AB87ABCDPO.垂直于弦的直径平分弦及弦所对的弧四,垂径定理ABCDPO.垂直于弦的直径平分881.如图4,⊙M与x

轴相交于点A(2,0),

B(8,0),与y轴相切于点C,则圆心M的坐标是()?4xyMCBOA1.如图4,⊙M与x轴相交于点A(2,0),?4xyMCB892.CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,

求CD的长.ABCDEO.2.CD为⊙O的直径,弦AB⊥CD于ABCDEO.903.矩形ABCD与圆O交A,B,E,FDE=1cm,EF=3cm,则AB=___ABFECD3.矩形ABCD与圆O交A,B,E,FABFECD91五、圆心角、弦、弧、弦心距、前四组量中有一组量相等,其余各组量也相等;2.在⊙O中,弦AB所对的圆心角∠AOB=100°,则弦AB所对的圆周角为______.1.如图,⊙O为△ABC的外接圆,

AB为直径,AC=BC,则∠A的度数为()A.30°B.40°C.45°D.60°ABCO圆周角圆心角定理?五、圆心角、弦、弧、弦心距、前四组量中有一组量相等,其余各组92OACB3、如图,A、B、C三点在圆上,若∠ABC=400,则∠AOC=4.如图,则∠1+∠2=__12.OACB3、如图,A、B、C三点在圆上,若∠ABC=400,935.(苏州市)如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140°

D5.(苏州市)如图,四边形ABCD内接于⊙O,若它的一个外角94六、直线和圆的位置关系直线与圆的位置关系圆心与直线的距离d与圆的半径r的关系直线名称直线与圆的交点个数相离相切相交●ldrd﹥r——0d=r切线1d﹤r割线2六、直线和圆的位置关系直线与圆的位置关系圆心与直线的距离d与951.如图Rt△ABC中,AB=10,BC=8,以点C为圆心,4.8为半径的圆与线段AB的位置关系是___________;D相切设⊙C的半径为r,则当______________时,⊙C与线段AB没交点;当______________时,⊙C与线段AB有两个交点;当______________时,⊙C与线段AB仅有一交点;0<r<4.8或r>84.8<r≤6r=4.8

或6<r≤81.如图Rt△ABC中,AB=10,BC=8,以点C为圆心,96六、切线的判定与性质1.如图,△ABC中,AB=AC,O是BC的中点,以O为圆心的圆与AB相切于点D,求证:AC是圆的切线·ABEOCD切线的判定一般有三种方法:1.定义法:和圆有唯一的一个公共点2.距离法:d=r3.判定定理:过半径的外端且垂直于半径六、切线的判定与性质1.如图,△ABC中,AB=AC,O是B972.如图圆O切PB于点B,PB=4,PA=2,则圆O的半径是____.OABP2.如图圆O切PB于OABP98切线长定理?OAPBE切线长定理?OAPBE991.如图,若AB,AC与⊙O相切与点B,C两点,P为弧BC上任意一点,过点P作⊙O的切线交AB,AC于点D,E,若AB=8,则△ADE的周长为_______;16cm若∠A=70°,则∠BPC=___;125°M1.如图,若AB,AC与⊙O相切与点B,C两点,P为弧B1002、如图,PA、PA是圆的切线,A、B为切点,AC为直径,∠BAC=200,则∠P=ACBP3、已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F

求证:(1)AD=BD;(2)DF是⊙O的切线.ABCDEFO2、如图,PA、PA是圆的切线,A、B为切点,AC为直径,∠101正多边形和圆正多边形和圆102

例1①正六边形ABCDEF外切于⊙O,⊙O的半径为R,则该正六边形的周长为

面积为

.ABCDEFOMR

②正六边形的内切圆与外接圆面积之比是___.

例1①正六边形ABCDEF外切于⊙O,⊙O的半103九、弧长的扇形的面积弧长的计算公式为:

=·2r=扇形的面积公式为:

S=因此扇形面积的计算公式为S=或S=r九、弧长的扇形的面积弧长的计算公式为:·2r=扇形的面积公式104

例2①如图1,正六边形ABCDEF的边长是a.分别以C,F为圆心,a为半径作弧,则图中阴影部分的周长是_____.ABCDEF⌒⌒例2①如图1,正六边形ABCDEF的边长是a.分105弧长和扇形面积的计算例1扇形AOB的半径为12cm,∠AOB=120°,求AB的长和扇形的面积及周长.例2如图,当半径为30cm的转动轮转过120°时,传送带上的物体A平移的距离为______.A弧长和扇形面积的计算例1扇形AOB的半径为12cm,例2106圆锥有关的计算例小红准备自己动手用纸板制作圆锥形的生日礼帽,如图,圆锥帽底面积半径为9cm,母线长为36cm,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为_________.|--36cm---|9cm.圆锥有关的计算例小红准备自己动手用纸板制作圆锥|--36cm107练习如图有一圆锥形粮堆,其正视图为边长是6m的正三角形ABC,粮堆的母线AC的中点P处有一老鼠正在偷吃粮食此时,小猫正在B处,它要沿圆锥侧面到达P,处捕捉老鼠,则小猫所经过的最短路程是_____.(保留)ABCP.练习如图有一圆锥形粮堆,其正视图为ABCP.10812.如图∠PAQ是直角,半径为5的圆O与AP相切于点T,与AQ相交于点B,C两点.(1)BT是否平分∠OBA?证明你的结论.(2)若已知AT=4,试求AB的长.PTAOBCQ12.如图∠PAQ是直角,半径为5的圆OPTAOBCQ109第25章复习第25章复习110第25章复习┃知识归类┃知识归纳┃1.事件在一定条件下,

的事件,叫做随机事件.确定事件包括

事件和

事件.[注意]随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.2.概率的意义可能发生也可能不发生必然不可能第25章复习┃知识归类┃知识归纳┃1.事件可能发生也可能111第25章复习┃知识归类一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=

.[注意]

事件A发生的概率的取值范围

≤P(A)≤

,当A为必然事件时,P(A)=

;当A为不可能事件时,P(A)=

.3.求随机事件概率的三种方法(1)

法;(2)

法;(3)

法.0110直接列举列表树形图第25章复习┃知识归类一般地,如果在一次试验中,有n种可112第25章复习┃知识归类4.用频率估计概率一般地,在大量重复试验中,事件A发生的频率稳定

,那么事件A发生的概率P(A)=

.

某个常数附近第25章复习┃知识归类4.用频率估计概率某个常数附近113►考点一事件第25章复习┃考点攻略┃考点攻略┃例1下列事件是必然事件的是(

)A.随意掷两个均匀的骰子,朝上面的点数之和为6B.抛一枚硬币,正面朝上C.3个人分成两组,一定有2个人分在一组D.打开电视,正在播放动画片C►考点一事件第25章复习┃考点攻略┃考点攻略┃例114第25章复习┃考点攻略[解析]C随意掷两个均匀的骰子,朝上面的点数之和可能为2至12中的任何一个;抛一枚硬币,朝上的一面有可能是正面,也有可能是反面;3个人分成两组,一定有一组有2个人,有一组有1人;打开电视,有可能正在播放动画片,也有可能在播放广告、电视剧等.第25章复习┃考点攻略[解析]C随意掷两个均匀的骰子115第25章复习┃考点攻略►考点二用合适的方法计算概率例2在一个布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行摸球游戏,甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树形图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.第25章复习┃考点攻略►考点二用合适的方法计算概率116第25章复习┃考点攻略[解析]甲从袋中摸出一球有三种可能结果,乙从袋中摸出一球也有三种可能结果,所以可以通过列表法和树形图法解决此题.第25章复习┃考点攻略[解析]甲从袋中摸出一球有三种可117第25章复习┃考点攻略解:(1)树形图如下:图25-1第25章复习┃考点攻略解:(1)树形图如下:图25-1118第25章复习┃考点攻略列表如下:甲乙白红黑白白,白红,白黑,白红白,红红,红黑,红黑白,黑红,黑黑,黑第25章复习┃考点攻略列表如下:甲白红黑白白,白红119第25章复习┃考点攻略第25章复习┃考点攻略120第25章复习┃考点攻略►考点三用频率估计概率例3在一个不透明的布袋中,红色、黑色、白色的玻璃球共有120个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和55%,则口袋中白色球的个数很可能是________个.36第25章复习┃考点攻略►考点三用频率估计概率例3121第25章复习┃考点攻略[解析]大量试验下获得的频率可以近似地看成概率,本题中摸到红色、黑色球的频率稳定在15%和55%,可以看作红色、黑色球分别占玻璃球总数的15%和55%,因此白色球的个数可能是120×(1-15%-55%)=36(个).第25章复习┃考点攻略[解析]大量试验下获得的频率可以122第25章复习┃考点攻略►考点四利用面积求概率例4

如图25-2是一个被等分成6个扇形且可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是________.图25-2第25章复习┃考点攻略►考点四利用面积求概率例4123第25章复习┃考点攻略第25章复习┃考点攻略124第25章复习┃考点攻略►考点五概率与公平性例5四张质地相同的卡片如图25-3所示,将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.第25章复习┃考点攻略►考点五概率与公平性例5四125第25章复习┃考点攻略第25章复习┃考点攻略126第25章复习┃考点攻略(2)根据题意可列表2236222222326222222326332323336662626366第25章复习┃考点攻略(2)根据题意可列表2236222127第25章复习┃考点攻略第25章复习┃考点攻略128第25章复习┃考点攻略第25章复习┃考点攻略129赠送一套教学模板年终总结/工作汇报/教育计划/PPT演示赠送一套教学模板年终总结/工作汇报/教育计划/PPT演示130目录PART01教学目的PART02教学准备PART03教学内容PART04教学过程目录PART01PART02PART03PART04131PART01教学目的PART01132标题文本预设:此部分内容作为文字排版占位显示(建议使用主题字体)标题文本预设:此部分内容作为文字排版占位显示(建议使用主题字体)标题文本预设:此部分内容作为文字排版占位显示(建议使用主题字体)标题文本预设:此部分内容作为文字排版占位显示(建议使用主题字体)单击输入标题内容标题文本预设:此部分内容作为文字排版占位显示标题文本预设:此133单击输入标题内容单击输入标题内容单击输入标题内容单击输入标题内容13450%30%20%标题文本预设:标题文本预设:标题文本预设:此部分内容作为文字排版占位显示

(建议使用主题字体)此部分内容作为文字排版占位显示

(建议使用主题字体)此部分内容作为文字排版占位显示

(建议使用主题字体)单击输入标题内容50%30%20%标题文本预设:标题文本预设:标题文本预设:135标题文本预设:标题文本预设:标题文本预设:标题文本预设:标题文本预设:此部分内容作为文字排版占位显示

标题文本预设:此部分内容作为文字排版占位显示

(标题文本预设:此部分内容作为文字排版占位显示

标题文本预设:此部分内容作为文字排版占位显示

单击输入标题内容标题文本预设:标题文本预设:标题文本预设:标题文本预设:标题136PART02教学准备PART0213755%60%80%90%输入小标题添加适当的文字,一页的文字最好不要超200,添加适当的文字输入小标题添加适当的文字,一页的文字最好不要超200,添加适当的文字输入小标题添加适当的文字,一页的文字最好不要超200,添加适当的文字输入小标题添加适当的文字,一页的文字最好不要超200,添加适当的文字单击输入标题内容55%60%80%90%输入小标题输入小标题输入小标题输入小138标题文本预设:此部分内容作为文字排版占位显示标题文本预设:此部分内容作为文字排版占位显示

标题文本预设:此部分内容作为文字排版占位显示标题文本预设:此部分内容作为文字排版占位显示

(建议使用主题字体)标题文本预设:此部分内容作为文字排版占位显示单击输入标题内容标题文本预设:此部分内容作为文字排版占位显示标题文本预设:此13901标题文本预设:此部分内容作为文字排版占位显示02标题文本预设:此部分内容作为文字排版占位显示

03标题文本预设:此部分内容作为文字排版占位显示

04标题文本预设:此部分内容作为文字排版占位显示单击输入标题内容01标题文本预设:此部分内容作为文字排版占位显示02标题文140标题文本预设:此部分内容作为文字排版占位显示标题文本预设:此部分内容作为文字排版占位显示标题文本预设:此部分内容作为文字排版占位显示标题文本预设:此部分内容作为文字排版占位显示单击输入标题内容标题文本预设:此部分内容作为文字排版占位显示标题文本预设:此141PART03教学内容PART0314201

关键词02

关键词03

关键词04

关键词05

关键词06

关键词07

关键词09

关键词08

关键词10

关键词11

关键词单击输入标题内容01

关键词02

关键词03

关键词04

关键词05

关键词1431000507525标题文本预设:此部分内容作为文字排版占位显示

(建议使用主题字体)标题文本预设:此部分内容作为文字排版占位显示

(建议使用主题字体)标题文本预设:此部分内容作为文字排版占位显示

(建议使用主题字体)单击输入标题内容1000507525标题文本预设:此部分内容作为文字排版占位144

01

02

03

04点击添加标题您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。点击添加标题您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。点击添加标题您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。点击添加标题您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。单击输入标题内容01020304点击添加标题点击添加标题点击14535%65%此部分内容作为文字排版占位显示...如需更改请在(设置形状格式)菜单下(文本选项)中调整标题文本预设:单击输入标题内容35%65%此部分内容作为文字排版占位显示...如需更改请146PART04教学过程PART04147单击编辑标题请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容单击编辑标题请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容单击编辑标题请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容单击编辑标题请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容请在此粘贴或者输入你的文字内容单击编辑标题单击输入标题内容单击编辑标题单击编辑标题单击编148标题文本预设:此部分内容作为文字排版占位显示(建议使用主题字体)

如需更改请在(设置形状格式)菜单下(文本选项)中调整标题文本预设:此部分内容作为文字排版占位显示(建议使用主题字体)

如需更改请在(设置形状格式)菜单下(文本选项)中调整单击输入标题内容标题文本预设:此部分内容作为文字排版占位显示(建议使用主题字14950%70%65%45%点击添加标题通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。点击添加标题通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。点击添加标题通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。点击添加标题通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。单击输入标题内容50%70%65%45%点击添加标题点击添加标题点击添加标题150此部分内容作为文字排版占位显示

(建议使用主题字体)标题文本预设:此部分内容作为文字排版占位显示此部分内容作为文字排版占位显示此部分内容作为文字排版占位显示此部分内容作为文字排版占位显示55404364单击输入标题内容此部分内容作为文字排版占位显示

(建议使用主题字体)标题文本15120XX单击此处添加文本内容,文字内容需概括精炼单击此处添加文本内容,文字内容需概括精炼单击此处添加文本内容,文字需概括精炼单击此处添加文本内容,文字需概括精炼单击此处添加文本内容,文字需精炼单击此处添加文本内容,文字需精炼单击此处添加文本内容,文字内容需概括精炼单击此处添加文本内容,文字内容需概括精炼单击此处添加文本内容,文字内容需概括精炼

单击此处添加文本内容,文字内容需概括精炼20XX20XX20XX填加标题单击输入标题内容20XX单击此处添加文本内容,文字内容需概括精炼单击此处添加152点击添加文字说明详情介绍点击添加文字说明详情介绍点击添加文字点击添加文字说明详情介绍点击添加文字说明详情介绍点击添加文字点击添加文字说明详情介绍点击添加文字说明详情介绍点击添加文字点击添加文字说明详情介绍点击添加文字说明详情介绍点击添加文字点击添加文字说明详情介绍点击添加文字说明详情介绍点击添加文字点击添加文字说明详情介绍点击添加文字说明详情介绍点击添加文字01在此添加标题03在此添加标题05在此添加标题02在此添加标题04在此添加标题06在此添加标题点击添加文字说明详情介绍点击添加文字说明详情介绍点击添加文字153谢谢聆听LOGO谢谢聆听LOGO154人教版九年级数学上册期末复习人教版九年级数学上册期末复习155第一关知识要点说一说一元二次方程复习

第一关知识要点说一说一元二次方程复习156一元二次方程一元二次方程的定义一元二次方程的解法一元二次方程的应用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论