华东师大版九年级数学上册《21章二次根式复习题》公开课课件整理_第1页
华东师大版九年级数学上册《21章二次根式复习题》公开课课件整理_第2页
华东师大版九年级数学上册《21章二次根式复习题》公开课课件整理_第3页
华东师大版九年级数学上册《21章二次根式复习题》公开课课件整理_第4页
华东师大版九年级数学上册《21章二次根式复习题》公开课课件整理_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复习二次根式

复习二次根式(一)知识梳理:(先自学书本再两人合作交流,8分钟)1、什么叫二次根式?二次根式有哪些性质?并用代数式描述出来。2、最简二次根式要同时具备下列两个条件:(1)被开方数中不含____________。(2)被开方数中___________________________。3、什么叫同类二次根式?确定同类二次根式的前提条件是什么?4、二次根式的运算法则是什么?(加减乘除)5、如何确定一个带根号的无理数的整数部分与小数部分?举例说明。自学指导:(一)知识梳理:(先自学书本再两人合作交流,8分钟)自学指导(二)综合运用:1、若则

——.2、(2014•德州)若y=﹣2,

则(x+y)y=

.3、(2015•黄冈)计算:=_______.(二)综合运用:1、若形如的式子叫做二次根式.

二次根式有意义的条件是被开方数是非负数。即被开方数1、什么叫二次根式?二次根式有意义的条件是什么?成果展示:形如的式子叫做二次根式.二次根式有意义1、二次根式的有哪些性质?

二次根式的性质(a≥0)性质3:性质2:理一理性质1:

(a≥0)

(a<0)≥0(a≥0)(双重非负性)-a1、二次根式的有哪些性质?

二次根式的性质(a≥0)性质3:即时训练:1、(2015•武汉)若

在实数范围内有意义,则x的取值范围是().

A.x>0B.x>3C.x≥3D.x≤33、当x

=

时,二次根式取最小值,其最小值为

.C2、(2014•湖州)二次根式中字母x的取值范围是().A.x<1B.x≤1C.x>1 D. x≥1D+x-5-10即时训练:1、(2015•武汉)若4、(2014浙江)在式子中,

x可以取2和3的是().

A.B.C.D.5、(2015娄底)式子有意义的的取值范围是().

A.

B.

C.

D.CD4、(2014浙江)在式子CD即时训练:

成立的条件()

==B164-π6、即时训练:成立的条件()==B164-π610、实数p在数轴上的位置如图所示,化简:解:原式10、实数p在数轴上的位置如图所示,化简:解:原式2、最简二次根式要同时具备下列两个条件:(1)被开方数中不含

。(2)被开方数中

分母所有因数或因式的幂指数都小于2。2、最简二次根式要同时具备下列两个条件:分母所有因数或因式的3、什么叫同类二次根式?

把几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.3、什么叫同类二次根式?

把几个二次根式化即时训练:1、下列各式不是最简二次根式的是().

A.B.C.D.2、化简二次根式得().

A.B.C.D.30DB即时训练:1、下列各式不是最简二次根式的是().D即时训练:

3、(2014•孝感)下列二次根式中,不能与合并的是().

A.B.C.D.C4、(2015•福建)若2<x<5时,则

=

——.

2x-6即时训练:C4、(2015•福建)若2<x<5时,则4、二次根式的运算法则是什么?(加减乘除)二次根式加减法法则:

二次根式相加减,先把各个二次根式化成最简二次根式,再将同类二次根式合并。4、二次根式的运算法则是什么?(加减乘除)二次根式加减二次根式乘法法则:积的算术平方根:=二次根式除法法则:(a≥0,b>0)=(a≥0,b>0)商的算术平方根:二次根式乘除法法则:二次根式乘法法则:积的算术平方根:=二次根式除法法则:(a≥二次根式的混合运算顺序:

二次根式的混合运算顺序与实数的混合运算顺序相同,先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。有理数的加法交换律、加法结合律、乘法交换律、乘法结合律、乘方对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算。注意,二次根式的结果应化为最简二次根式。二次根式的混合运算顺序:

二次根式的混合运算顺即时训练:1、(2015·昆明)下列运算正确的是()

A.B.C.D.

D2、(2015•衡阳)计算:的结果为()

A.B.C.3D.5C即时训练:1、(2015·昆明)下列运算正确的是(3、(2015•宿迁)计算

的值是

.4、(2015•南京)计算

的结果是

.23、(2015•宿迁)25、如何确定一个二次根式的整数部分与小数部分?确定二次根式的整数部分,即先对这个二次根式进行平方得数字a,再找与a相邻的两个能开得尽方的整数,记为b、c,其中b<a<c,再对他们进行开平方运算即可。确定二次根式的小数部分,即用原数减去整数部分。5、如何确定一个二次根式的整数部分与小数部分?确定二1、(2015•邵阳)

介于().

A.﹣1和0之间B.0和1之间

C.1和2之间D.2和3之间2、(2015•福建泉州)已知:m、n为两个连续的整数且m<<n,则m+n=

.3、(2015•安徽)与1+最接近的整数是().

A.4B.3C.2D.1B7即时训练:C1、(2015•邵阳)介于().B7即时(二)、综合运用:1、若则2、(2014•德州)若y=﹣2,

则(x+y)y=

3、(2015•黄冈)计算:=

2

3(二)、综合运用:1、若3、(2015•黄冈)计算:=2二次根式二次根式的化简与运算二次根式乘除二次根式加减本节课的收获:二次根式二次根式的化简与运算二次根式乘除二次根式加减本节课的积累识记:(5分钟)1、什么叫二次根式?二次根式有哪些性质?2、最简二次根式要同时具备下列两个条件:(1)被开方数中不含__________。(2)被开方数中_____________________。3、什么叫同类二次根式?4、二次根式的运算法则是什么?(加减乘除)5、如何确定一个二次根式的整数部分与小数部分?积累识记:(5分钟)积累识记:1、(2014•湘潭)式子有意义,则x的取值范围是()

A.x>1B.x<1C.x≥1D.x≤12、(2014•济宁)如果ab>0,a+b<0,那么下面各式:①=,②•=1,

③÷=﹣b,其中正确的是()

A.①②B.②③C.①③D.①②③CB积累识记:1、(2014•湘潭)式子3、(2014•安徽)设n为正整数,且n<<n+1,则n的值为()

A.5 B.6 C.7 D.8

4、(2015年云南)计算:﹣=

5、(2015年南京)使式子1+有意义的x的取值范围是

6、(2015滨州)计算:

=Dx≥0达标检测:3、(2014•安徽)设n为正整数,且n<<n+1,则n的值为()

A.5 B.6 C.7 D.8

4、(2015年云南)计算:﹣=

5、(2015年南京)使式子1+有意义的x的取值范围是

6、(2015滨州)计算:3、(2014•安徽)设n为正整数,Dx≥0达标检测:3、7、(2014•福建泉州)先化简,再求值:(a+2)2+a(a﹣4),其中a=.解:(a+2)2+a(a﹣4)=a2+4a+4+a2﹣4a=2a2+4,当a=时,原式=2×(

)2+4=10.7、(2014•福建泉州)先化简,再求值:(a+2)2+a8、下列各式不是二次根式的是()9、选择:下列计算正确的是()针对检测:10、使等式=·

成立的条件是BAa≥28、下列各式不是二次根式的是(12、计算:补充作业:12、计算:补充作业:13.已知2<x<3,化简:.课外作业补充:13.已知2<x<3,化简:.课外作业补充:14.如图,四边形ABCD中∠A=∠BCD=90°已知∠B=45°,AB=,CD=求(1)四边形ABCD的周长;(2)四边形ABCD的面积.ABCD14.如图,四边形ABCD中∠A=∠BCD=90°ABCD谢谢大家谢谢大家复习二次根式

复习二次根式(一)知识梳理:(先自学书本再两人合作交流,8分钟)1、什么叫二次根式?二次根式有哪些性质?并用代数式描述出来。2、最简二次根式要同时具备下列两个条件:(1)被开方数中不含____________。(2)被开方数中___________________________。3、什么叫同类二次根式?确定同类二次根式的前提条件是什么?4、二次根式的运算法则是什么?(加减乘除)5、如何确定一个带根号的无理数的整数部分与小数部分?举例说明。自学指导:(一)知识梳理:(先自学书本再两人合作交流,8分钟)自学指导(二)综合运用:1、若则

——.2、(2014•德州)若y=﹣2,

则(x+y)y=

.3、(2015•黄冈)计算:=_______.(二)综合运用:1、若形如的式子叫做二次根式.

二次根式有意义的条件是被开方数是非负数。即被开方数1、什么叫二次根式?二次根式有意义的条件是什么?成果展示:形如的式子叫做二次根式.二次根式有意义1、二次根式的有哪些性质?

二次根式的性质(a≥0)性质3:性质2:理一理性质1:

(a≥0)

(a<0)≥0(a≥0)(双重非负性)-a1、二次根式的有哪些性质?

二次根式的性质(a≥0)性质3:即时训练:1、(2015•武汉)若

在实数范围内有意义,则x的取值范围是().

A.x>0B.x>3C.x≥3D.x≤33、当x

=

时,二次根式取最小值,其最小值为

.C2、(2014•湖州)二次根式中字母x的取值范围是().A.x<1B.x≤1C.x>1 D. x≥1D+x-5-10即时训练:1、(2015•武汉)若4、(2014浙江)在式子中,

x可以取2和3的是().

A.B.C.D.5、(2015娄底)式子有意义的的取值范围是().

A.

B.

C.

D.CD4、(2014浙江)在式子CD即时训练:

成立的条件()

==B164-π6、即时训练:成立的条件()==B164-π610、实数p在数轴上的位置如图所示,化简:解:原式10、实数p在数轴上的位置如图所示,化简:解:原式2、最简二次根式要同时具备下列两个条件:(1)被开方数中不含

。(2)被开方数中

分母所有因数或因式的幂指数都小于2。2、最简二次根式要同时具备下列两个条件:分母所有因数或因式的3、什么叫同类二次根式?

把几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.3、什么叫同类二次根式?

把几个二次根式化即时训练:1、下列各式不是最简二次根式的是().

A.B.C.D.2、化简二次根式得().

A.B.C.D.30DB即时训练:1、下列各式不是最简二次根式的是().D即时训练:

3、(2014•孝感)下列二次根式中,不能与合并的是().

A.B.C.D.C4、(2015•福建)若2<x<5时,则

=

——.

2x-6即时训练:C4、(2015•福建)若2<x<5时,则4、二次根式的运算法则是什么?(加减乘除)二次根式加减法法则:

二次根式相加减,先把各个二次根式化成最简二次根式,再将同类二次根式合并。4、二次根式的运算法则是什么?(加减乘除)二次根式加减二次根式乘法法则:积的算术平方根:=二次根式除法法则:(a≥0,b>0)=(a≥0,b>0)商的算术平方根:二次根式乘除法法则:二次根式乘法法则:积的算术平方根:=二次根式除法法则:(a≥二次根式的混合运算顺序:

二次根式的混合运算顺序与实数的混合运算顺序相同,先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。有理数的加法交换律、加法结合律、乘法交换律、乘法结合律、乘方对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算。注意,二次根式的结果应化为最简二次根式。二次根式的混合运算顺序:

二次根式的混合运算顺即时训练:1、(2015·昆明)下列运算正确的是()

A.B.C.D.

D2、(2015•衡阳)计算:的结果为()

A.B.C.3D.5C即时训练:1、(2015·昆明)下列运算正确的是(3、(2015•宿迁)计算

的值是

.4、(2015•南京)计算

的结果是

.23、(2015•宿迁)25、如何确定一个二次根式的整数部分与小数部分?确定二次根式的整数部分,即先对这个二次根式进行平方得数字a,再找与a相邻的两个能开得尽方的整数,记为b、c,其中b<a<c,再对他们进行开平方运算即可。确定二次根式的小数部分,即用原数减去整数部分。5、如何确定一个二次根式的整数部分与小数部分?确定二1、(2015•邵阳)

介于().

A.﹣1和0之间B.0和1之间

C.1和2之间D.2和3之间2、(2015•福建泉州)已知:m、n为两个连续的整数且m<<n,则m+n=

.3、(2015•安徽)与1+最接近的整数是().

A.4B.3C.2D.1B7即时训练:C1、(2015•邵阳)介于().B7即时(二)、综合运用:1、若则2、(2014•德州)若y=﹣2,

则(x+y)y=

3、(2015•黄冈)计算:=

2

3(二)、综合运用:1、若3、(2015•黄冈)计算:=2二次根式二次根式的化简与运算二次根式乘除二次根式加减本节课的收获:二次根式二次根式的化简与运算二次根式乘除二次根式加减本节课的积累识记:(5分钟)1、什么叫二次根式?二次根式有哪些性质?2、最简二次根式要同时具备下列两个条件:(1)被开方数中不含__________。(2)被开方数中_____________________。3、什么叫同类二次根式?4、二次根式的运算法则是什么?(加减乘除)5、如何确定一个二次根式的整数部分与小数部分?积累识记:(5分钟)积累识记:1、(2014•湘潭)式子有意义,则x的取值范围是()

A.x>1B.x<1C.x≥1D.x≤12、(2014•济宁)如果ab>0,a+b<0,那么下面各式:①=,②•=1,

③÷=﹣b,其中正确的是()

A.①②B.②③C.①③D.①②③CB积累识记:1、(2014•湘潭)式子3、(2014•安徽)设n为正整数,且n<<n+1,则n的值为()

A.5 B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论