版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§2.4.2抛物线的简单几何性质(1)X§2.4.2抛物线的简单几何性质(1)X1定义:在平面内,与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.抛物线的定义及标准方程准线方程焦点坐标标准方程图形xFOylxFOylxFOylxFOyly2=-2px(p>0)x2=2py(p>0)y2=2px(p>0)x2=-2py(p>0)一、温故知新定义:在平面内,与一个定点F和一条定直线l(l不经过点F)的2范围1、由抛物线y2=2px(p>0)有所以抛物线的范围为二、探索新知如何研究抛物线y2=2px(p>0)的几何性质?抛物线在y轴的右侧,当x的值增大时,︱y︱也增大,这说明抛物线向右上方和右下方无限延伸。范围1、由抛物线y2=2px(p>0)有所以抛物线的范围3对称性2、关于x轴对称即点(x,-y)也在抛物线上,故抛物线y2=2px(p>0)关于x轴对称.则(-y)2=2px若点(x,y)在抛物线上,即满足y2=2px,对称性2、关于x轴即点(x,-y)也在抛物线上,故抛4顶点3、定义:抛物线与它的轴的交点叫做抛物线的顶点。y2=2px(p>0)中,令y=0,则x=0.即:抛物线y2=2px(p>0)的顶点(0,0).注:这与椭圆有四个顶点,双曲线有两个顶点不同。顶点3、定义:抛物线与它的轴的交点叫做抛物线的5离心率4、P(x,y)抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率。由定义知,抛物线y2=2px(p>0)的离心率为e=1.
下面请大家得出其余三种标准方程抛物线的几何性质。离心率4、P(x,y)抛物线上的点与焦点的距6(二)归纳:抛物线的几何性质图形方程焦点准线范围顶点对称轴elFyxOlFyxOlFyxOlFyxOy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)x≥0y∈Rx≤0y∈Ry≥0x∈Ry≤
0x∈R(0,0)x轴y轴1(二)归纳:抛物线的几何性质图形方程焦点准线范围顶点对7特点:1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1;思考:抛物线标准方程中的p对抛物线开口的影响.P(x,y)P越大,开口越开阔特点:1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但8补充(1)通径:通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。|PF|=x0+p/2xOyFP通径的长度:2PP越大,开口越开阔(2)焦半径:连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。焦半径公式:(标准方程中2p的几何意义)利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图。补充(1)通径:通过焦点且垂直对称轴的直线,|PF|=x0+9
因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,),解:所以设方程为:又因为点M在抛物线上:所以:因此所求抛物线标准方程为:
例1:已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,),求它的标准方程.三、典例精析坐标轴当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m≠0)(x2=2my(m≠0)),可避免讨论因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点10练习一:1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是
.2、已知点A(-2,3)与抛物线的焦点的距离是5,则P=
。4练习一:1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线11四、归纳总结抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;抛物线只有一条对称轴,没有对称中心;抛物线的离心率是确定的,等于1;抛物线只有一个顶点,一个焦点,一条准线;抛物线的通径为2P,2p越大,抛物线的张口越大.1、范围:2、对称性:3、顶点:4、离心率:5、通径:四、归纳总结抛物线只位于半个坐标平面内,虽然它也可以无限延伸12§2.4.2抛物线的简单几何性质(2)X§2.4.2抛物线的简单几何性质(2)X13一、直线与抛物线位置关系种类xyO1、相离;2、相切;3、相交(一个交点,两个交点)与双曲线的情况一样一、直线与抛物线位置关系种类xyO1、相离;2、相切;3、相14xyO二、判断方法探讨1、直线与抛物线相离,无交点。例:判断直线y=x+2与抛物线y2=4x的位置关系计算结果:得到一元二次方程,需计算判别式。相离。xyO二、判断方法探讨1、直线与抛物线相离,无交点。例:判断15xyO2、直线与抛物线相切,交与一点。例:判断直线y=x+1与抛物线y2=4x的位置关系计算结果:得到一元二次方程,需计算判别式。相切。二、判断方法探讨xyO2、直线与抛物线相切,交与一点。例:判断直线y=16xyO3、直线与抛物线的对称轴平行,相交与一点。例:判断直线y=6与抛物线y2=4x的位置关系计算结果:得到一元一次方程,容易解出交点坐标二、判断方法探讨xyO3、直线与抛物线的对称轴平行,相交与一点。例:判断直线17xyO例:判断直线y=x-1与抛物线y2=4x的位置关系计算结果:得到一元二次方程,需计算判别式。相交。4、直线与抛物线的对称轴不平行,相交与两点。二、判断方法探讨xyO例:判断直线y=x-1与计算结果:得到一元二次18三、判断直线与抛物线位置关系的操作程序(一)把直线方程代入抛物线方程得到一元一次方程得到一元二次方程直线与抛物线的对称轴平行(重合)相交(一个交点)计算判别式>0=0<0相交相切相离三、判断直线与抛物线位置关系的操作程序(一)把直线方程代入抛19几何画板演示几何画板演示20①①①①21①①①①①①22①①23抛物线的简单几何性质课件24xyOFABB’A’例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.y2=4x解法一:由已知得抛物线的焦点为F(1,0),所以直线AB的方程为y=x-1xyOFABB’A’例2.斜率为1的直线L经过抛物线25xyOFABB’A’例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.y2=4x解法二:由题意可知,xyOFABB’A’例2.斜率为1的直线L经过抛物线26分析:运用抛物线的定义和平面几何知识来证比较简捷.变式:过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以AB为直径的圆和这抛物线的准线相切.分析:运用抛物线的定义和平面几何知识来证比较简捷.变式:27证明:如图.
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.设AB的中点为E,过A、E、B分别向准线l引垂线AD,EH,BC,垂足为D、H、C,则|AF|=|AD|,|BF|=|BC|∴|AB|=|AF|+|BF|=|AD|+|BC|=2|EH|证明:如图.所以EH是以AB为直径的圆E的半径,且EH⊥l28课堂练习:1.过抛物线的焦点,作倾斜角为的直线,则被抛物线截得的弦长为_________2.垂直于x轴的直线交抛物线y2=4x于A、B,且|AB|=4,求直线AB的方程.y2=8xX=3课堂练习:y2=8xX=329
点评:本题用了分类讨论的方法.若先用数形结合,找出符合条件的直线的条数,就不会造成漏解。点评:本题用了分类讨论的方法.若先用数形结合,找30§2.4.2抛物线的简单几何性质(3)X§2.4.2抛物线的简单几何性质(3)X31抛物线的简单几何性质课件32抛物线的简单几何性质课件33抛物线的简单几何性质课件34xyBAFO解:因为直线AB过定点F且不与x轴平行,设直线AB的方程为xyBAFO解:因为直线AB过定点F且不与x轴平35xyBAFOxyBAFO36xyBAFOxyBAFO37抛物线的简单几何性质课件38例3、已知抛物线y2=2x,过Q(2,1)作直线与抛物线交于A、B,求AB中点的轨迹方程..F解:例3、已知抛物线y2=2x,过Q(2,1)作直线与抛物线交于39例4.已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标的最小值。.xoyFABMCND解:例4.已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标40抛物线的简单几何性质课件41§2.4.2抛物线的简单几何性质(1)X§2.4.2抛物线的简单几何性质(1)X42定义:在平面内,与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.抛物线的定义及标准方程准线方程焦点坐标标准方程图形xFOylxFOylxFOylxFOyly2=-2px(p>0)x2=2py(p>0)y2=2px(p>0)x2=-2py(p>0)一、温故知新定义:在平面内,与一个定点F和一条定直线l(l不经过点F)的43范围1、由抛物线y2=2px(p>0)有所以抛物线的范围为二、探索新知如何研究抛物线y2=2px(p>0)的几何性质?抛物线在y轴的右侧,当x的值增大时,︱y︱也增大,这说明抛物线向右上方和右下方无限延伸。范围1、由抛物线y2=2px(p>0)有所以抛物线的范围44对称性2、关于x轴对称即点(x,-y)也在抛物线上,故抛物线y2=2px(p>0)关于x轴对称.则(-y)2=2px若点(x,y)在抛物线上,即满足y2=2px,对称性2、关于x轴即点(x,-y)也在抛物线上,故抛45顶点3、定义:抛物线与它的轴的交点叫做抛物线的顶点。y2=2px(p>0)中,令y=0,则x=0.即:抛物线y2=2px(p>0)的顶点(0,0).注:这与椭圆有四个顶点,双曲线有两个顶点不同。顶点3、定义:抛物线与它的轴的交点叫做抛物线的46离心率4、P(x,y)抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率。由定义知,抛物线y2=2px(p>0)的离心率为e=1.
下面请大家得出其余三种标准方程抛物线的几何性质。离心率4、P(x,y)抛物线上的点与焦点的距47(二)归纳:抛物线的几何性质图形方程焦点准线范围顶点对称轴elFyxOlFyxOlFyxOlFyxOy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)x≥0y∈Rx≤0y∈Ry≥0x∈Ry≤
0x∈R(0,0)x轴y轴1(二)归纳:抛物线的几何性质图形方程焦点准线范围顶点对48特点:1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1;思考:抛物线标准方程中的p对抛物线开口的影响.P(x,y)P越大,开口越开阔特点:1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但49补充(1)通径:通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。|PF|=x0+p/2xOyFP通径的长度:2PP越大,开口越开阔(2)焦半径:连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。焦半径公式:(标准方程中2p的几何意义)利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图。补充(1)通径:通过焦点且垂直对称轴的直线,|PF|=x0+50
因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,),解:所以设方程为:又因为点M在抛物线上:所以:因此所求抛物线标准方程为:
例1:已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,),求它的标准方程.三、典例精析坐标轴当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m≠0)(x2=2my(m≠0)),可避免讨论因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点51练习一:1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是
.2、已知点A(-2,3)与抛物线的焦点的距离是5,则P=
。4练习一:1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线52四、归纳总结抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;抛物线只有一条对称轴,没有对称中心;抛物线的离心率是确定的,等于1;抛物线只有一个顶点,一个焦点,一条准线;抛物线的通径为2P,2p越大,抛物线的张口越大.1、范围:2、对称性:3、顶点:4、离心率:5、通径:四、归纳总结抛物线只位于半个坐标平面内,虽然它也可以无限延伸53§2.4.2抛物线的简单几何性质(2)X§2.4.2抛物线的简单几何性质(2)X54一、直线与抛物线位置关系种类xyO1、相离;2、相切;3、相交(一个交点,两个交点)与双曲线的情况一样一、直线与抛物线位置关系种类xyO1、相离;2、相切;3、相55xyO二、判断方法探讨1、直线与抛物线相离,无交点。例:判断直线y=x+2与抛物线y2=4x的位置关系计算结果:得到一元二次方程,需计算判别式。相离。xyO二、判断方法探讨1、直线与抛物线相离,无交点。例:判断56xyO2、直线与抛物线相切,交与一点。例:判断直线y=x+1与抛物线y2=4x的位置关系计算结果:得到一元二次方程,需计算判别式。相切。二、判断方法探讨xyO2、直线与抛物线相切,交与一点。例:判断直线y=57xyO3、直线与抛物线的对称轴平行,相交与一点。例:判断直线y=6与抛物线y2=4x的位置关系计算结果:得到一元一次方程,容易解出交点坐标二、判断方法探讨xyO3、直线与抛物线的对称轴平行,相交与一点。例:判断直线58xyO例:判断直线y=x-1与抛物线y2=4x的位置关系计算结果:得到一元二次方程,需计算判别式。相交。4、直线与抛物线的对称轴不平行,相交与两点。二、判断方法探讨xyO例:判断直线y=x-1与计算结果:得到一元二次59三、判断直线与抛物线位置关系的操作程序(一)把直线方程代入抛物线方程得到一元一次方程得到一元二次方程直线与抛物线的对称轴平行(重合)相交(一个交点)计算判别式>0=0<0相交相切相离三、判断直线与抛物线位置关系的操作程序(一)把直线方程代入抛60几何画板演示几何画板演示61①①①①62①①①①①①63①①64抛物线的简单几何性质课件65xyOFABB’A’例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.y2=4x解法一:由已知得抛物线的焦点为F(1,0),所以直线AB的方程为y=x-1xyOFABB’A’例2.斜率为1的直线L经过抛物线66xyOFABB’A’例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.y2=4x解法二:由题意可知,xyOFABB’A’例2.斜率为1的直线L经过抛物线67分析:运用抛物线的定义和平面几何知识来证比较简捷.变式:过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以AB为直径的圆和这抛物线的准线相切.分析:运用抛物线的定义和平面几何知识来证比较简捷.变式:68证明:如图.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度体育赛事官方赛事组织与管理合同
- 二零二五年度时尚配饰商标转让合同3篇
- 2025版木材加工厂租赁合同编制指南详解3篇
- 二零二五年度口腔医院临床路径管理与优化承包合同3篇
- 2025年度木门品牌授权与销售合同
- 第3章 物质构成的奥秘【考题猜想】(解析版)-2023-2024学年九年级化学上学期期中考点大串讲(沪教版全国)
- 课题申报参考:面向智能网联混行交通路网的车道布局优化研究
- 2025年度农家乐美食品牌授权与维权合同范本
- 二零二五版金融科技内部股东全部股权转让与业务布局合同4篇
- 二零二五版木方板材出口企业贸易融资合同样本3篇
- 初级中学语文教师资格考试学科知识与教学能力试题及解答参考(2024年)
- 《带一本书去读研:研究生关键学术技能快速入门》笔记
- 人教版八年级数学下册举一反三专题17.6勾股定理章末八大题型总结(培优篇)(学生版+解析)
- 2024届上海高考语文课内古诗文背诵默写篇目(精校版)
- DL-T5024-2020电力工程地基处理技术规程
- 2024年度-美团新骑手入门培训
- 初中数学要背诵记忆知识点(概念+公式)
- 驾照体检表完整版本
- 农产品农药残留检测及风险评估
- 农村高中思想政治课时政教育研究的中期报告
- 20100927-宣化上人《愣严咒句偈疏解》(简体全)
评论
0/150
提交评论