陕西省咸阳市礼泉县2022年高一数学第一学期期末调研模拟试题含解析_第1页
陕西省咸阳市礼泉县2022年高一数学第一学期期末调研模拟试题含解析_第2页
陕西省咸阳市礼泉县2022年高一数学第一学期期末调研模拟试题含解析_第3页
陕西省咸阳市礼泉县2022年高一数学第一学期期末调研模拟试题含解析_第4页
陕西省咸阳市礼泉县2022年高一数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用长度为24米的材料围成一矩形场地,中间加两道隔墙(如图),要使矩形的面积最大,则隔墙的长度为A.3米 B.4米C.6米 D.12米2.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是.A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)3.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.4.如图,在菱形ABCD中,下列式子成立的是A. B.C. D.5.函数的图像与函数的图像所有交点的横坐标之和等于A2 B.4C.6 D.86.函数,对任意的非零实数,关于的方程的解集不可能是A B.C. D.7.函数的大致图象是()A. B.C. D.8.已知,都是正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件9.下列哪一项是“”的必要条件A. B.C. D.10.圆与圆的位置关系为()A.相离 B.相交C.外切 D.内切二、填空题:本大题共6小题,每小题5分,共30分。11.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是____________.12.设向量,,则__________13.在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,____________.14.写出一个能说明“若函数为奇函数,则”是假命题的函数:_________.15.函数的图像与直线y=a在(0,)上有三个交点,其横坐标分别为,,,则的取值范围为_______.16.已知,,则ab=_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,平面,,为棱上一点.(1)设为与的交点,若,求证:平面;(2)若,求证:18.已知向量、、是同一平面内的三个向量,且.(1)若,且,求;(2)若,且与互相垂直,求.19.设全集U是实数集,集合,集合.(1)求集合A,集合B;(2)求.20.一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用且克的药剂,药剂在血液中的含量(克)随着时间(小时)变化的函数关系式近似为,其中(1)若病人一次服用9克的药剂,则有效治疗时间可达多少小时?(2)若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值21.已知函数(其中)的图象上相邻两个最高点的距离为(Ⅰ)求函数的图象的对称轴;(Ⅱ)若函数在内有两个零点,求的取值范围及的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】主要考查二次函数模型的应用解:设隔墙长度为,则矩形另一边长为=12-2,矩形面积为=(12-2)=,0<<6,所以=3时,矩形面积最大,故选A2、A【解析】考点:奇偶性与单调性的综合分析:根据题目条件,画出一个函数图象,再观察即得结果解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(-∞,-1)∪(0,1)故选A3、C【解析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)4、D【解析】解:利用菱形的性质可知,第一问中方向不同,错误;选项B中显然不共线,因此错误.,因此C不对;只有D正确5、D【解析】由于函数与函数均关于点成中心对称,结合图形以点为中心两函数共有个交点,则有,同理有,所以所有交点横坐标之和为.故正确答案为D.考点:1.函数的对称性;2.数形结合法的应用.6、D【解析】由题意得函数图象的对称轴为设方程的解为,则必有,由图象可得是平行于x轴的直线,它们与函数的图象必有交点,由函数图象的对称性得的两个解要关于直线对称,故可得;同理方程的两个解也要关于直线对称,同理从而可得若关于的方程有一个正根,则方程有两个不同的实数根;若关于的方程有两个正根,则方程有四个不同的实数根综合以上情况可得,关于的方程的解集不可能是.选D非选择题7、C【解析】由奇偶性定义判断的奇偶性,结合对数、余弦函数的性质判断趋向于0时的变化趋势,应用排除法即可得正确答案.【详解】由且定义域,所以为偶函数,排除B、D.又在趋向于0时趋向负无穷,在趋向于0时趋向1,所以在趋向于0时函数值趋向负无穷,排除A.故选:C8、B【解析】利用特殊值法、基本不等式结合充分条件、必要条件的定义判断可得出结论.【详解】充分性:由于,,且,取,则,充分性不成立;必要性:由于,,且,解得,必要性成立.所以,当,时,“”“”必要不充分条件.故选:B.9、D【解析】根据必要条件的定义可知:“”能推出的范围是“”的必要条件,再根据“小推大”的原则去判断.【详解】由题意,“选项”是“”的必要条件,表示“”推出“选项”,所以正确选项为D.【点睛】推出关系能满足的时候,一定是小范围推出大范围,也就是“小推大”.10、A【解析】通过圆的标准方程,可得圆心和半径,通过圆心距与半径的关系,可得两圆的关系.【详解】圆,圆心,半径为;,圆心,半径为;两圆圆心距,所以相离.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、##-0.4【解析】根据函数的周期性及可得的值,进而利用周期性即可求解的值.【详解】解:因为是定义在上且周期为2的函数,在区间上,所以,,又,即,解得,所以,故答案为:.12、【解析】,故,故填.13、【解析】因为角与角关于轴对称,所以,,所以,所以答案:14、(答案不唯一)【解析】由题意,只需找一个奇函数,0不在定义域中即可.【详解】由题意,为奇函数且,则满足题意故答案为:15、【解析】由x∈(0,)求出,然后,画出正弦函数的大致图像,利用图像求解即可【详解】由题意因为x∈(0,),则,可画出函数大致的图则由图可知当时,方程有三个根,由解得,解得,且点与点关于直线对称,所以,点与点关于直线对称,故由图得,令,当为x∈(0,)时,解得或,所以,,,解得,,则,即.故答案为:【点睛】关键点睛:解题关键在于利用x∈(0,),则画出图像,并利用对称性求出答案16、1【解析】将化成对数形式,再根据对数换底公式可求ab的值.【详解】,.故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】(1)只需证得,即可证得平面;(2)因为平面,平面,所以,即可证得平面,从而得证.试题解析:(1)在与中,因为,所以,又因为,所以在中,有,则.又因为平面,平面,所以平面.(2)因为平面,平面,所以.又因为,平面,平面,,所以平面,平面,所以18、(1)或(2),【解析】(1)先设,根据题意有求解.(2)根据,,得,,然后根据与互相垂直求解.【详解】(1)设,依题意得,解得或,即或.(2)因为,,因为与互相垂直,所以,即,所以,,解得或.【点睛】本题主要考查平面向量的向量表示和运算,还考查了运算求解的能力,属于中档题.19、(1),;(2),.【解析】(1)根据一元二次不等式的解法解出集合A,根据分式不等式解出结合B;(2)由交集、并集的概念和运算即可得出结果.【小问1详解】由题意知,,且【小问2详解】由(1)知,,,所以,.20、(1);(2)【解析】(1)分两段解不等式,解得结果即可得解;(2)求出当时,,再根据函数的单调性求出最小值为,解不等式可得解.【详解】(1)由题意,当可得,当时,,解得,此时;当时,,解得,此时,综上可得,所以病人一次服用9克的药剂,则有效治疗时间可达小时;(2)当时,,由,在均为减函数,可得在递减,即有,由,可得,可得m的最小值为【点睛】本题考查了分段函数的应用,正确求出分段函数解析式是解题关键,属于中档题.21、(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由题意,图象上相邻两个最高点的距离为,即周期,可得,即可求解对称轴;(Ⅱ)函数在,内有两个零点,,转化为函数与函数有两个交点,即可求解的范围;在,内有两个零点,是关于对称轴是对称的,即可求解的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论