版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知向量,满足,,且与夹角为,则()A. B.C. D.2.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.3.下列函数是奇函数,且在上单调递增的是()A. B.C. D.4.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是A. B.C. D.5.已知,,,则,,三者的大小关系是()A. B.C. D.6.下列区间中,函数单调递增的区间是()A. B.C. D.7.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A B.C. D.8.已知在定义域上是减函数,且,则的取值范围为()A.(0,1) B.(-2,1)C.(0,) D.(0,2)9.设,则a,b,c大小关系为()A. B.C. D.10.直线与圆交点的个数为A.2个 B.1个C.0个 D.不确定11.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行12.如图,在正三棱锥中,,点为棱的中点,则异面直线与所成角的大小为()A.30° B.45°C.60° D.90°二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.14.若角的终边与以原点为圆心的单位圆交于点,则的值为___________.15.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为______16.在中,若,则的形状一定是___________三角形.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.计算下列各式的值:(1);(2);(3).18.如图所示,在中,,,与相交于点.(1)用,表示,;(2)若,证明:,,三点共线.19.已知函数的最小正周期为.(1)求的值;(2)若,求的值.20.已知(其中a为常数,且)是偶函数.(1)求实数m的值;(2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小.21.设集合,,.(1)求,;(2)若,求;(3)若,求的取值范围.22.参加劳动是学生成长的必要途径,每个孩子都要抓住日常生活中的劳动实践机会,自觉参与、自己动手,坚持不懈进行劳动,掌握必要的劳动技能.在劳动中接受锻炼、磨炼意志,培养正确的劳动价值观和良好的劳动品质.大家知道,用清水洗衣服,其上残留的污渍用水越多,洗掉的污渍量也越多,但是还有污渍残留在衣服上,在实验基础上现作如下假定:用单位的水清洗1次后,衣服上残留的污渍与本次清洗前残留的污渍之比为函数(1)①试解释与的实际意义;②写出函数应该满足的条件或具有的性质(写出至少2条,不需要证明);(2)现有单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.哪种方案清洗后衣服上残留的污渍比较少?请说明理由
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【详解】根据向量运算性质,,故选:D2、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.3、D【解析】利用幂函数的单调性和奇函数的定义即可求解.【详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.4、B【解析】要取得最小值,则与共线且反向即位于的中线上,中线长为设,则则当时,取最小值,故选第II卷(非选择题5、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C6、A【解析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数7、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C8、A【解析】根据函数的单调性进行求解即可.【详解】因为在定义域上是减函数,所以由,故选:A9、C【解析】利用有理指数幂和幂函数的单调性分别求得,,的范围即可得答案【详解】,,,又在上单调递增,,,故选:C10、A【解析】化为点斜式:,显然直线过定点,且定点在圆内∴直线与圆相交,故选A11、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.12、C【解析】取BC的中点E,∠DFE即为所求,结合条件即求.【详解】如图取BC的中点E,连接EF,DE,则EF∥AB,∠DFE即为所求,设,在正三棱锥中,,故,∴,∴,即异面直线与所成角的大小为.故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、①②③④【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.14、##【解析】直接根据三角函数定义求解即可.【详解】解:因为角的终边与以原点为圆心的单位圆交于点,所以根据三角函数单位圆的定义得故答案为:15、【解析】先根据是的零点,是图像的对称轴可转化为周期的关系,从而求得的取值范围,又根据所求值为最大值,所以从大到小对赋值验证找到适合的最大值即可【详解】由题意可得,即,解得,又因为在上单调,所以,即,因为要求的最大值,令,因为是的对称轴,所以,又,解得,所以此时,在上单调递减,即在上单调递减,在上单调递增,故在不单调,同理,令,,在上单调递减,因为,所以在单调递减,满足题意,所以的最大值为5.【点睛】本题综合考查三角函数图像性质的运用,在这里需注意:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期16、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)3(3)1【解析】(1)根据实数指数幂的运算法则化简即可;(2)根据对数的运算法则和性质化简求值;(3)利用诱导公式化简求值即可.试题解析:(1)原式=-10(+2)+1=+10-10-20+1=-.(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2lg10+(lg5+lg2)2=2+(lg10)2=2+1=3.(3)原式=18、(1),;(2)见解析【解析】(1)首先根据题中所给的条件,可以求得,从而有,将代入,整理求得结果,同理求得;(2)根据条件整理得到,从而得到与共线,即,,三点共线,证得结果.【详解】(1)解:因为,所以,所以.因为,所以,所以.(2)证明:因为,所以.因为,所以,即与共线.因为与的有公共点,所以,,三点共线.【点睛】该题考查的是有关向量的问题,涉及到的知识点有平面向量基本定理,利用向量共线证得三点共线,属于简单题目.19、(1)(2),【解析】【小问1详解】由题意,解得,即故【小问2详解】由题意即,又,故故20、(1)(2)【解析】(1)由偶函数的定义得对任意的实数恒成立,进而整理得恒成立,故;(2)设,进而得唯一实数根,使得,即,故,再结合得得答案.【小问1详解】解:因为是偶函数,所以对于任意的实数,有,所以对任意的实数恒成立,即恒成立,所以,即,【小问2详解】解:设,因为当时,,所以在区间上无实数根,当时,因为,,所以,使得,又在上单调递减,所以存在唯一实数根;因为,所以,又,所以,所以.所以21、(1),(2)(3)【解析】(1)先可求出,再利用交集,并集运算求解即可;(2)由(1)得,然后代入,即可求得;(3)由可得到,解不等式组求出的范围即可.【详解】(1)由已知得,所以,;(2)由(1)得,当时,,所以.;(3)因为,所以,解得.【点睛】本题考查集合的交并补的运算,考查集合的包含关系的含义,是基础题.22、(1)表示没有用水清洗时,衣服上的污渍不变;表示用1个单位的水清洗时,可清除衣服上残留的污渍的;定义域为,值域为,在区间内单调递减.(2)当时,,此时两种清洗方法效果相同;当时,,此时把单位的水平均分成份后,清洗两次,残留的污渍较少;当时,,此时用单位的水清洗一次后残留的污渍较少.【解析】(1)①根据函数的实际意义说明即可;②由实际意义可得出函数的定义域,值域,单调性.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生心理健康教育与感恩教育教案范文
- 课时1 七年级 Unit 1 2025年中考英语(仁爱版)一轮复习基础练(含答案)
- 课堂表扬的艺术教师经验分享
- 2024至2030年中国地轨行走式收放线装置数据监测研究报告
- 2024至2030年中国叠氮化钠数据监测研究报告
- 2024至2030年中国医疗垃圾焚烧炉数据监测研究报告
- 2024至2030年中国六开双色双面印刷机行业投资前景及策略咨询研究报告
- 2024年重庆市初中学业水平暨高中招生考试语文试题(A卷)含答案
- 2024年中国立式管道式离心泵市场调查研究报告
- 2024年中国油炸牛排模型市场调查研究报告
- 《颅内动脉瘤护理》课件
- 2024年高端医疗服务行业市场研究报告
- 国家标准《建筑设计防火规范》2018修订版
- DD 2014-11 地面沉降干涉雷达数据处理技术规程
- 体外冲击波碎石的护理课件
- 学生视力情况统计表
- JGT377-2012 混凝土防冻泵送剂
- 工作交接单-(附件三)
- 幼儿园故事《我想帮忙》
- 公共租赁住房申请表
- 生产计划及进度统计表
评论
0/150
提交评论