版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列选项中,与的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.2.如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.命题:,命题:(其中),那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.如图,正方形中,为的中点,若,则的值为()A. B.C. D.5.已知函数若关于的方程有6个根,则的取值范围为()A. B.C. D.6.已知函数可表示为1234则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增7.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.C. D.8.已知全集U=R,集合,,则集合()A. B.C. D.9.已知函数,若函数在上有三个零点,则的最大值为A. B.C. D.10.历史上数学计算方面的三大发明是阿拉伯数、十进制和对数,其中对数的发明,大大缩短了计算时间,为人类研究科学和了解自然起了重大作用,对数运算对估算“天文数字”具有独特优势.已知,,则的估算值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________12.如果,且,则化简为_____.13.若函数y=是函数的反函数,则_________________14.如图,正方形ABCD中,M,N分别是BC,CD中点,若,则______.15.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).16.已知函数f(x)=π6x,x三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系xOy中,角的顶点与原点O重合,始边与x轴的正半轴重合,它的终边过点,以角的终边为始边,逆时针旋转得到角Ⅰ求值;Ⅱ求的值18.计算:(1)94(2)lg5+lg2⋅19.已知函数.(1)当时,求函数的值域;(2)若函数的值域为R,求实数取值范围.20.对于函数(1)判断的单调性,并用定义法证明;(2)是否存在实数a使函数为奇函数?若存在,求出a的值;若不存在,说明理由21.如图,正方形的边长为,,分别为边和上的点,且的周长为2.(1)求证:;(2)求面积的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先计算的值,再逐项计算各项的值,从而可得正确的选项.【详解】.对于A,因为,故A正确.对于B,,故B正确.对于C,,故C错误.对于D,,故D正确.故选:C.2、A【解析】由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【详解】由零点存在性定理可知,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【点睛】本题主要考查了充分不必要条件的判断,属于中档题.3、A【解析】根据充分性、必要性的定义,结合特例法进行判断即可.【详解】当时,,所以由能推出,当时,显然当时,满足,但是不成立,因此是的充分不必要条件,故选:A4、D【解析】因为E是DC的中点,所以,∴,∴,考点:平面向量的几何运算5、B【解析】作出函数的图象,令,则原方程可化为在上有2个不相等的实根,再数形结合得解.【详解】作出函数的图象如图所示.令,则可化为,要使关于的方程有6个根,数形结合知需方程在上有2个不相等的实根,,不妨设,,则解得,故的取值范围为,故选B【点睛】形如的函数的零点问题与函数图象结合较为紧密,处理问题的基础和关键是作出,的图象.若已知零点个数求参数的范围,通常的做法是令,先估计关于的方程的解的个数,再根据的图象特点,观察直线与图象的交点个数,进而确定参数的范围6、B【解析】,所以选项A错误;由表得的值域是,所以选项B正确C不正确;在区间上不是单调递增,所以选项D错误.详解】A.,所以该选项错误;B.由表得的值域是,所以该选项正确;C.由表得的值域是,不是,所以该选项错误;D.在区间上不是单调递增,如:,但是,所以该选项错误.故选:B【点睛】方法点睛:判断函数的性质命题的真假,一般要认真理解函数的定义域、值域、单调性等的定义,再根据定义分析判断.7、A【解析】正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积8、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.9、C【解析】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,画出函数图像,结合图象进而求得答案【详解】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,结合函数图象可知,当直线经过点时,取得最小值,从而取得最大值,且.【点睛】本题考查函数的零点问题,解题的关键是得出函数与的图象在上有三个不同的交点,属于一般题10、C【解析】令,化为指数式即可得出.【详解】令,则,∴,即的估算值为.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.12、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:13、0【解析】可得,再代值求解的值即可【详解】的反函数为,则,则,则.故答案为:014、【解析】以,为基底,由平面向量基本定理,列方程求解,即可得出结果.【详解】设,则,由于可得,解得,所以故答案为:【点睛】本题考查平面向量基本定理的运用,考查向量的加法运算,考查运算求解能力,属于中档题.15、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:16、12##【解析】利用分段函数的解析式,代入求解.【详解】因为函数f(x)=所以f(f(13))=f故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】Ⅰ由题意利用任意角的三角函数的定义,求得的值Ⅱ先根据题意利用任意角的三角函数的定义求得、的值,再利用二倍角公式求得、的值,再利用两角和的余弦公式求得的值【详解】解:Ⅰ角的顶点与原点O重合,始边与x轴的正半轴重合,它的终边过点,Ⅱ以角的终边为始边,逆时针旋转得到角,由Ⅰ利用任意角的三角函数的定义可得,,,【点睛】本题主要考查任意角的三角函数的定义,二倍角公式,两角和的余弦公式的应用,属于中档题18、(1)12【解析】(1)根据指数幂的运算法则逐一进行化简;(2)根据对数幂的运算法则进行化简;【详解】解:(1)原式=3(2)原式=lg【点睛】指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂形式表示,运用指数幂的运算性质来解答.19、(1);(2).【解析】(1)当时,,利用二次函数的性质求出真数部分的范围,根据对数函数的单调性可求出值域;(2)的值域为等价于的值域包含,故,即求.小问1详解】当时,,∵,∴,∴函数的值域;【小问2详解】要使函数的值域为R,则的值域包含,∴,解得或,∴实数取值范围为.20、(1)在R上单调递增;(2)存在使得为奇函数.【解析】(1)利用函数单调性的定义证明;(2)利用函数奇偶性的定义求参数【小问1详解】证明:任取且,则又且,即在R上单调递增【小问2详解】若为R上为奇函数,则对任意的都有21、(1)证明见解析;(2).【解析】(1)补形得证明其与全等,从而得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江双鸭山市(2024年-2025年小学六年级语文)部编版专题练习((上下)学期)试卷及答案
- 钢筋混凝土用660MPa级热轧带肋钢筋编制说明
- 2024年精密医疗器械定制研发合作合同版B版
- 2024某保险公司与投保人关于保险服务的合同
- 2024年铝板新材料研发与产业化合同3篇
- 2024年高品质抹灰工艺劳务分包合作协议3篇
- 2024年超高清视频内容制作版权转让合同
- 2024年起重设备购销标准合同样本一
- 2024智慧城市整体解决方案提供协议
- 2024年质押借款协议精简版3篇
- 钦州市浦北县2022-2023学年七年级上学期期末语文试题
- 古典时期钢琴演奏传统智慧树知到期末考试答案章节答案2024年星海音乐学院
- 乐山市市中区2022-2023学年七年级上学期期末地理试题【带答案】
- 两人合伙人合作协议合同
- 苏教版一年级上册数学期末测试卷含答案(完整版)
- 2024年中考历史复习-中国古代史专项试题
- DZ/T 0462.5-2023 矿产资源“三率”指标要求 第5部分:金、银、铌、钽、锂、锆、锶、稀土、锗(正式版)
- 大学生餐饮职业生涯规划书
- 生殖与衰老课件
- 2024年建筑继续教育-安全员继续教育笔试参考题库含答案
- 经典蓝色商务商业模板
评论
0/150
提交评论