版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线:与直线:,则()A.,平行 B.,垂直C.,关于轴对称 D.,关于轴对称2.集合,,则()A. B.C. D.3.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.44.函数部分图象大致为()A. B.C. D.5.设,则()A.3 B.2C.1 D.-16.已知函数,若方程有四个不同的解,,,,且,则的取值范围是()A. B.C. D.7.设集合,则()A. B.C.{2} D.{-2,2}8.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度9.若直线经过两点,且倾斜角为45°,则m的值为A. B.1C.2 D.10.下列函数中,是奇函数且在区间上单调递减的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.正三棱锥P﹣ABC的底面边长为1,E,F,G,H分别是PA,AC,BC,PB的中点,四边形EFGH的面积为S,则S的取值范围是__12.函数是定义在上的奇函数,当时,,则______13.命题“,使”是真命题,则的取值范围是________14.函数恒过定点________.15.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2球,则2球颜色相同的概率等于________16.已知函数的图象(且)恒过定点P,则点P的坐标是______,函数的单调递增区间是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若,求的定义域(2)若为奇函数,求a值.18.已知函数,,g(x)与f(x)互为反函数.(1)若函数在区间内有最小值,求实数m的取值范围;(2)若函数y=h(g(x))在区间(1,2)内有唯一零点,求实数m的取值范围.19.已知函数在区间上单调,当时,取得最大值5,当时,取得最小值-1.(1)求的解析式(2)当时,函数有8个零点,求实数的取值范围20.设函数(1)求函数的值域;(2)设函数,若对,求正实数a的取值范围21.(1)已知,求的值;(2)已知,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据题意,可知两条直线都经过轴上的同一点,且两条直线的斜率互为相反数,即可得两条直线的对称关系.【详解】因为,都经过轴上的点,且斜率互为相反数,所以,关于轴对称.故选:D【点睛】本题考查了两条直线的位置关系,关于轴对称的直线方程特征,属于基础题.2、B【解析】解不等式可求得集合,由交集定义可得结果.【详解】,,.故选:B.3、B【解析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B4、A【解析】根据函数的解析式可判断函数为奇函数,再根据函数的零点个数可得正确的选项.【详解】因为,所以为奇函数,图象关于原点对称,故排除B;令,即,解得,即只有一个零点,故排除C,D故选:A5、B【解析】直接利用诱导公式化简,再根据同角三角函数的基本关系代入计算可得;【详解】解:因为,所以;故选:B6、D【解析】根据图象可得:,,,.,则.令,,,而函数.即可求解.【详解】解:函数,的图象如下:根据图象可得:若方程有四个不同的解,,,,且,则,,,.,,则.令,,,而函数在,单调递增.所以,则.故选:D.【点睛】本题考查函数的图象与性质,考查函数与方程思想、转化与化归思想、数形结合思想,考查运算求解能力,求解时注意借助图象分析问题,属于中档题.7、C【解析】解一元二次不等式,求出集合B,解得集合A,根据集合的交集运算求得答案.【详解】由题意解得:,故,或,所以,故选:C8、B【解析】直接利用三角函数的平移变换求解.【详解】因函数y=cos,所以要得到函数y=cos的图象,只需将函数y=cos2的图象向左平移个单位长度,故选:B【点睛】本题主要考查三角函数的图象的平移变换,属于基础题.9、A【解析】由两点坐标求出直线的斜率,再由斜率等于倾斜角的正切值列出方程求得的值.【详解】因为经过两点,的直线的倾斜角为45°,∴,解得,故选A【点睛】本题主要考查了直线的斜率与倾斜角的关系,属于基础题.10、C【解析】根据函数的单调性和奇偶性对各个选项逐一分析即可.【详解】对A,函数的图象关于轴对称,故是偶函数,故A错误;对B,函数的定义域为不关于原点对称,故是非奇非偶函数,故B错误;对C,函数的图象关于原点对称,故是奇函数,且在上单调递减,故C正确;对D,函数的图象关于原点对称,故是奇函数,但在上单调递增,故D错误.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、(,+∞)【解析】由正三棱锥可得四边形EFGH为矩形,并可得其边长与三棱锥棱长关系,从而可得面积S的范围.【详解】∵棱锥P﹣ABC为底面边长为1的正三棱锥∴AB⊥PC又∵E,F,G,H,分别是PA,AC,BC,PD的中点,∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC则四边形EFGH为一个矩形又∵PC,∴EF,∴S=EFEH,∴四边形EFGH的面积S的取值范围是(,+∞),故答案为:(,+∞)三、12、11【解析】根据奇函数性质求出函数的解析式,然后逐层代入即可.【详解】,,当时,,即,,,故答案为:11.13、【解析】可根据题意得出“,恒成立”,然后根据即可得出结果.【详解】因为命题“,使”是真命题,所以,恒成立,即恒成立,因为当时,,所以,的取值范围是,故答案为:.14、【解析】根据函数图象平移法则和对数函数的性质求解即可【详解】将的图象现左平移1个单位,再向下平移2个单位,可得到的图象,因为的图象恒过定点,所以恒过定点,故答案为:15、【解析】把4个球编号,用列举法写出所有基本事件,并得出2球颜色相同的事件,计数后可计算概率【详解】2个红球编号为,2个白球编号为,则依次取2球的基本事件有:共6个,其中2球颜色相同的事件有共2个,所求概率为故答案为:16、①.②.【解析】令,求得,即可得到函数的图象恒过定点;令,求得函数的定义域为,利用二次函数的性质,结合复合函数的单调性的判定方法,即可求解.【详解】由题意,函数(且),令,即,可得,即函数的图象恒过定点,令,即,解得,即函数的定义域为,又由函数的图象开口向下,对称轴的方程为,所以函数在上单调递增,在上单调递减,结合复合函数的单调性的判定方法,可得函数的递增区间为.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据定义域的求法,求得的定义域.(2)根据奇函数的定义域关于原点对称求得,判断为奇函数,从而确定的值.【详解】(1)依题意,,所以的定义域为.(2)依题意,,解得或,由于为奇函数,所以,解得,此时,,所以.18、(1);(2).【解析】(1)根据二次函数的性质研究情况下的单调性和值域,根据对数复合函数的单调性及其开区间最值,列不等式求参数范围.(2)将问题化为在内有唯一零点,利用二次函数的性质求参数范围即可.【小问1详解】由题设,,,所以在定义域上递增,在上递减,在上递增,又在内有最小值,当,即时,在上递减,上递增,此时的值域为,则;所以,可得;当,即时,在上递减,上递增,此时是值域上的一个子区间,则;所以开区间上不存在最值.综上,.【小问2详解】由,则,要使在(1,2)内有唯一零点,所以在内有唯一零点,又开口向上且对称轴为,所以,可得.19、(1);(2).【解析】(1)由函数的最大值和最小值求出,由周期求出ω,由特殊点的坐标出φ的值,可得函数的解析式(2)等价于时,方程有个不同的解.即与有个不同交点,画图数形结合即可解得【详解】(1)由题知,..又,即,的解析式为.(2)当时,函数有个零点,等价于时,方程有个不同的解.即与有个不同交点.由图知必有,即.实数的取值范围是.【点睛】已知函数有零点求参数常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解.20、(1)函数的值域为.(2)【解析】(1)由已知,利用基本不等式可求函数的值域;(2)由对可得函数函数在上的值域包含与函数在上的值域,由此可求正实数a的取值范围【小问1详解】,,则,当且仅当时取“=”,所以,即函数的值域为.【小问2详解】设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《天下国家》课件
- 《hp国内外研究进展》课件
- 《健康知识漫谈》课件
- 《人们怎么利用时间》课件
- 《艾滋病的基本知识》课件
- 二年级科学教科版课件《身体的“时间胶囊”》
- 城市总体规划合同(2篇)
- 主动脉夹层-课件
- 2022年安徽省六安市公开招聘警务辅助人员(辅警)笔试模拟自测题(C)卷含答案
- 2024年四川省内江市公开招聘警务辅助人员(辅警)笔试专项训练卷(2)含答案
- 医院物业保洁服务方案(技术方案)
- 2024年云南省昆明滇中新区公开招聘20人历年(高频重点提升专题训练)共500题附带答案详解
- 高一语文基础模块下册期末考试-2024-2025学年期末复习专项训练(高教版2023)
- 2024-2030年中国水泵市场深度调研分析及投资前景研究预测报告
- 预防接种上岗人员培训试题(预防接种门诊)
- 2024年中考英语最后一卷(广东卷)-2024年中考英语逆袭冲刺名校模拟真题速递(广东专用)
- 《护理伦理与法律法规》期末考试复习题库(含答案)
- DL-T5190.1-2022电力建设施工技术规范第1部分:土建结构工程
- 学困生转化讲座PP课件
- TD/T 1044-2014 生产项目土地复垦验收规程(正式版)
- 起重(信号、司索工)安全技术交底记录
评论
0/150
提交评论