




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.圆关于直线对称的圆的方程为A. B.C. D.2.幂函数的图像经过点,若.则()A.2 B.C. D.3.当时,若,则的值为A. B.C. D.4.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.25.函数的最小正周期为A. B.C.2 D.46.函数的值域为()A.(0,+∞) B.(-∞,1)C.(1,+∞) D.(0,1)7.锐角三角形的内角、满足:,则有()A. B.C. D.8.函数的零点所在区间是A. B.C. D.9.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}10.下列命题中,错误的是()A.平行于同一条直线的两条直线平行B.已知直线垂直于平面内的任意一条直线,则直线垂直于平面C.已知直线平面,直线,则直线D.已知为直线,、为平面,若且,则11.下列函数中为奇函数的是()A. B.C. D.12.下列函数在定义域内为奇函数,且有最小值的是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,则________.14.已知一个扇形的面积为,半径为,则其圆心角为___________.15.若,则a的取值范围是___________16.已知,若对一切实数,均有,则___.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.求下列各式的值:(1);(2)18.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:)与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.(1)求出游速与其耗氧量单位数之间的函数解析式;(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?19.已知(1)若为第三象限角,求的值(2)求的值(3)求的值20.近年来,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量(单位:mg/L)与过滤时间(单位:h)间的关系为(,均为非零常数,e为自然对数的底数),其中为时的污染物数量.若经过5h过滤后还剩余90%的污染物.(1)求常数的值;(2)试计算污染物减少到40%至少需要多长时间.(精确到1h,参考数据:,,,,)21.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数表示成的形式.(1)若,,,,,把的二次项系数表示成关于f的函数,并求的值域(此处视e为给定的常数,答案用e表示);(2)若,,,,求证:.22.用定义法证明函数在上单调递增
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由题意得,圆心坐标为,设圆心关于直线的对称点为,则,解得,所以对称圆方程为考点:点关于直线的对称点;圆的标准方程2、D【解析】利用待定系数法求出幂函数的解析式,再求时的值详解】解:设幂函数,其图象经过点,,解得,;若,则,解得故选:D3、A【解析】分析:首先根据题中所给的角的范围,求得相应的角的范围,结合题中所给的角的三角函数值,结合角的范围,利用同角三角函数的平方关系式,求得相应的三角函数值,之后应用诱导公式和同角三角函数商关系,求得结果.详解:因为,所以,所以,因为,所以,所以,所以,所以答案是,故选A.点睛:该题考查的是有关三角恒等变换问题,涉及到的知识点有同角三角函数关系式中的平方关系和商关系,以及诱导公式求得结果.4、B【解析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力5、C【解析】分析:根据正切函数的周期求解即可详解:由题意得函数的最小正周期为故选C点睛:本题考查函数的最小正周期,解答此类问题时根据公式求解即可6、D【解析】将函数解析式变形为,再根据指数函数的值域可得结果.【详解】,因为,所以,所以,所以函数的值域为.故选:D7、C【解析】根据三角恒等变换及诱导公式化简变形即可.【详解】将,变形为则,又,故,即,,因为内角、都为锐角,则,故,即,,所以.故选:C.8、C【解析】根据函数零点存在性定理进行判断即可【详解】∵,,∴,∴函数在区间(2,3)上存在零点故选C【点睛】求解函数零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件9、B【解析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.10、C【解析】由平行线的传递性可判断A;由线面垂直的定义可判断B;由线面平行的定义可判断C;由线面平行的性质和线面垂直的性质,结合面面垂直的判定定理,可判断D.【详解】解:由平行线的传递性可得,平行于同一条直线的两条直线平行,故A正确;由线面垂直的定义可得,若直线垂直于平面内的任意一条直线,则直线垂直于平面,故B正确;由线面平行的定义可得,若直线平面,直线,则直线或,异面,故C错误;若,由线面平行的性质,可得过的平面与的交线与平行,又,可得,结合,可得,故D正确.故选:C.11、D【解析】利用奇函数的定义逐个分析判断【详解】对于A,定义域为,因为,所以是偶函数,所以A错误,对于B,定义域为,因为,且,所以是非奇非偶函数,所以B错误,对于C,定义域为,因为定义域不关于原点对称,所以是非奇非偶函数,所以C错误,对于D,定义域为,因为,所以是奇函数,所以D正确,故选:D12、D【解析】选项A中,函数为奇函数,但无最小值,故满足题意选项B中,函数为偶函数,不合题意选项C中,函数为奇函数,但无最小值,故不合题意选项D中,函数,为奇函数,且有最小值,符合题意选D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.14、【解析】结合扇形的面积公式即可求出圆心角的大小.【详解】解:设圆心角为,半径为,则,由题意知,,解得,故答案为:15、【解析】先通过的大小确定的单调性,再利用单调性解不等式即可【详解】解:且,,得,又在定义域上单调递减,,,解得故答案为:【点睛】方法点睛:在解决与对数函数相关的解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件16、【解析】列方程组解得参数a、b,得到解析式后,即可求得的值.【详解】由对一切实数,均有可知,即解之得则,满足故故答案:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)-2;(2)18.【解析】(1)利用对数的运算性质化简求值即可.(2)由有理数指数幂与根式的关系及指数幂的运算性质化简求值.【小问1详解】原式【小问2详解】原式18、(1),;(2)24300【解析】:(1)由,可得,.(2)由题,解得:,故其耗氧量至多需要24300个单位.试题解析:(1)由题意,得,解得:,.∴游速与其耗氧量单位数之间的函数解析式为.(2)由题意,有,即,∴由对数函数的单调性,有,解得:,∴当一条鲑鱼的游速不高于时,其耗氧量至多需要24300个单位.点晴:解决函数模型应用的解答题19、(1)(2)(3)【解析】(1)化简式子可得,平方后利用同角三角函数的基本关系求解;(2)分子分母同除以,化切后,由两角和的正切公式可得解;(3)根据二倍角的余弦公式求解.【小问1详解】由可得,,平方得,,所以,即,因为为第三象限角,所以.【小问2详解】由可得,即,所以【小问3详解】由(1)知,,所以.20、(1)(2)42h【解析】(1)根据题意,得到,求解,即可得出结果;(2)根据(1)的结果,得到,由题意得到,求解,即可得出结果.【详解】(1)由已知得,当时,;当时,.于是有,解得(或).(2)由(1)知,当时,有,解得.故污染物减少到40%至少需要42h.【点睛】本题主要考查函数模型的应用,熟记指数函数的性质即可,属于常考题型.21、(1);(2)证明见解析【解析】(1)根据已知写出二次项系数后可得;;(2)注意到,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度快递配送与快递网点建设合同
- 2025年度房产过户房地产经纪人服务协议
- 2025年度农村邻居土地界限确权与使用协议书
- 二零二五年度矿山股份合作协议书:矿山生态环境保护与修复
- 2025年度宾馆客房客房服务员培训与劳务服务合同
- 2025年三氧化二砷行业现状分析-三氧化二砷市场年均复合增长率为3.78%
- 2023-2024学年广西钦州市第四中学高一下学期学业水平合格模拟考试生物试卷(一)
- 2025年鹤壁能源化工职业学院单招职业适应性测试题库必考题
- 设计合同终止协议书范本
- 放射医生应聘简历
- 《中国商贸文化》1.1商业简史
- 向贤明主编马工程《教育学原理》第一章-教育及其本课件
- 毕业设计论文-贝类脱壳机设计
- 四川甘孜州州属事业单位考调工作人员【共500题附答案解析】模拟检测试卷
- 咳嗽中医诊治课件
- 商户撤场退铺验收单
- 八项规定学习课件
- 《让孩子成才的秘密》寂静法师
- 《游戏活动对小班幼儿发展的影响研究(论文)7000字》
- 《工程电磁场》配套教学课件
- 病原生物学-绪论课件
评论
0/150
提交评论