版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.设函数若关于的方程有四个不同的解且则的取值范围是A. B.C. D.2.化简的值是A. B.C. D.3.如图所示,是顶角为的等腰三角形,且,则A. B.C. D.4.当时,函数和的图像只可能是()A. B.C. D.5.已知函数的部分图象如图所示,则的解析式可能为()A. B.C. D.6.若偶函数在定义域内满足,且当时,;则的零点的个数为()A.1 B.2C.9 D.187.已知是第三象限角,,则A. B.C. D.8.已知向量,,若,则()A. B.C.2 D.39.在中,,.若边上一点满足,则()A. B.C. D.10.已知函数,若,,,则实数、、的大小关系为()A. B.C. D.11.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的最大值是()A. B.C. D.12.已知函数在上是增函数,则的取值范围是()A., B.,C., D.,二、填空题(本大题共4小题,共20分)13.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____14.已知函数,使方程有4个不同的解:,则的取值范围是_________;的取值范围是________.15.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.16.已知函数,若函数在区间内有3个零点,则实数的取值范围是______三、解答题(本大题共6小题,共70分)17.已知函数(1)求函数的最小正周期和单调递增区间;(2)若,且,求的值.18.设函数,其中(1)若当时取到最小值,求a的取值范围(2)设的最大值为,最小值为,求的函数解析式,并求的最小值19.已知函数f(x)=ln(ex+1)+ax是偶函数,g(x)=f(lnx)(e=2.71828…)(Ⅰ)求实数a的值;(Ⅱ)判断并证明函数g(x)在区间(0,1)上的单调性20.已知且.(1)求的解析式;(2)解关于x不等式:.21.已知x∈R,集合A中含有三个元素3,x,x2-2x.(1)求元素x满足的条件;(2)若-2∈A,求实数x.22.计算:(1);(2)已知,求.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】画出函数的图像,通过观察的图像与的交点,利用对称性求得与的关系,根据对数函数的性质得到与的关系.再利用函数的单调性求得题目所求式子的取值范围.【详解】画出函数的图像如下图所示,根据对称性可知,和关于对称,故.由于,故.令,解得,所以.,由于函数在区间为减函数,故,故选A.【点睛】本小题主要考查函数的对称性,考查对数函数的性质,以及函数图像的交点问题,还考查了利用函数的单调性求函数的值域的方法,属于中档题.2、B【解析】利用终边相同角同名函数相同,可转化为求的余弦值即可.【详解】.故选B.【点睛】本题主要考查了三角函数中终边相同的角三角函数值相同及特殊角的三角函数值,属于容易题.3、C【解析】【详解】∵是顶角为的等腰三角形,且∴∴故选C4、A【解析】由一次函数的图像判断出a、b的符号,结合指数函数的图像一一进行判断可得答案.【详解】解:A项,由一次函数的图像可知此时函数为减函数,故A项正确;B项,由一次函数的图像可知此时函数为增函数,故B项错误;C项,由一次函数的图像可知,此时函数为的直线,故C项错误;D项,由一次函数的图像可知,,此时函数为增函数,故D项错误;故选A.【点睛】本题主要考查指数函数的图像特征,相对简单,由直线得出a、b的范围对指数函数进行判断是解题的关键.5、C【解析】根据奇偶性排除A和D,由排除B.【详解】由图可知,的图象关于原点对称,是奇函数,,,则函数,是偶函数,排除A和D.当时,恒成立,排除B.故选:C6、D【解析】由题,的零点的个数即的交点个数,再根据的对称性和周期性画出图象,数形结合分析即可【详解】由可知偶函数周期为2,故先画出时,的函数图象,再分别利用偶函数关于轴对称、周期为2画出的函数图象,则的零点个数即为的零点个数,即的交点个数,易得在上有个交点,故在定义域内有18个交点.故选:D7、D【解析】利用条件以及同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值【详解】∵α是第三象限角,tanα,sin2α+cos2α=1,得sinα,故选D【点睛】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题8、A【解析】先计算的坐标,再利用可得,即可求解.【详解】,因为,所以,解得:,故选:A9、A【解析】根据向量的线性运算法则,结合题意,即可求解.【详解】由中,,且边上一点满足,如图所示,根据向量的线性运算法则,可得:.故选:A.10、D【解析】根据条件判断函数是偶函数,且当时是增函数,结合函数单调性进行比较即可【详解】函数为偶函数,当时,为增函数,,,,则(1),即,则,故选:11、A【解析】分别求得,,,,,,,时,的最小值,作出的简图,因为,解不等式可得所求范围【详解】解:因为,所以,当时,的最小值为;当时,,,由知,,所以此时,其最小值为;同理,当,时,,其最小值为;当,时,的最小值为;作出如简图,因为,要使,则有解得或,要使对任意,都有,则实数的取值范围是故选:A12、D【解析】先根据题意建立不等式组,再求解出,最后给出选项即可.【详解】解:因为函数在上是增函数,所以,解得,则故选:D.【点睛】本题考查利用分段函数的单调性求参数范围,是基础题二、填空题(本大题共4小题,共20分)13、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.14、①.②.【解析】先画出分段函数的图像,依据图像得到之间的关系式以及之间的关系式,分别把和转化成只有一个自变量的代数式,再去求取值范围即可.【详解】做出函数的图像如下:在单调递减:最小值0;在单调递增:最小值0,最大值2;在上是部分余弦型曲线:最小值,最大值2.若方程有4个不同的解:,则不妨设四个解依次增大,则是方程的解,则,即;是方程的解,则由余弦型函数的对称性可知.故,由得即当时,单调递减,则故答案为:①;②15、【解析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解【详解】因为,,所以,所以,故答案为【点睛】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题16、【解析】函数在区间内有3个零点,等价于函数和的图象在区间内有3个交点,作出函数和的图象,利用数形结合可得结果【详解】若,则,,若,则,,若,则,,,,,,设和,则方程在区间内有3个不等实根,等价为函数和在区间内有3个不同的零点作出函数和的图象,如图,当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点,时,两个图象有3个交点;当直线经过点和时,两个图象有3个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程,两个图象有3个交点,在区间内有3个不等实根,则,故答案为【点睛】本题主要考查函数的零点与方程根的个数的应用,以及数形结合思想的应用,属于难题三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)运用两角和(差)的正弦公式、二倍角的正余弦公式、辅助角公式化简函数的解析式,最后根据正弦型函数的最小正周期公式进行求解即可;(2)运用换元法,结合正弦函数的性质进行求解即可.【小问1详解】故的最小正周期为,由得,所以增区间是;【小问2详解】由(1)知由得:,因为,所以,所以18、(1)(2),最小值为.【解析】(1)求得函数的导数,令,要使得函数在取到最小值,则函数必须先减后增,列出方程组,即可求解;(2)由(1)知,若时,得到函数在上单调递减,得到;若时,令,求得,分,,三种情况讨论,求得函数的解析式,利用一次函数、换元法和二次函数的性质,即可求解.【小问1详解】解:由函数,可得,令,要使得函数在取到最小值,则函数必须先减后增,则满足,解得,即实数取值范围为.【小问2详解】解:由(1)知,设,若时,即时,,即,函数在上单调递减,所以,可得;若时,即时,令,即,解得或,①当时,即时,在恒成立,即,可得函数在上单调递增,所以,可得;②当时,即时,在恒成立,即,可得函数在上单调递减,所以,可得;③当时,即时,当时,,即,单调递减;当时,,即,单调递增,所以当时,函数取得最小值,即,又由,可得,(i)当时,,即,所以,此时;(ii)当时,,即,所以,此时,综上可得,函数的解析式为,当时,;当时,;当时,令,则,可得,根据二次函数的性质,可得当时,函数取得最小值,最小值为;当时,令,则,可得,则,综上可得,函数的最小值为.19、(I)a=(II)答案见解析【解析】(I)由函数f(x)=ln(ex+1)+ax偶函数,可得f(-x)=f(x),解得a.(II)由(I)可得:f(x)=ln(ex+1).g(x)=f(lnx)=ln(x+1).利用函数单调性的定义确定函数的单调性即可.【详解】(I)∵函数f(x)=ln(ex+1)+ax是偶函数,∴f(-x)=f(x),∴ln(e-x+1)-ax=ln(ex+1)+ax,化为:(2a-1)x=0,x∈R,解得a=经过验证满足条件∴a=(II)由(I)可得:f(x)=ln(ex+1)∴g(x)=f(lnx)=ln(x+1)则函数g(x)在区间(0,1)上单调递增设,则,,,,,,∴函数g(x)在区间(0,1)上单调递增【点睛】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题20、(1)(2)【解析】(1)根据已知条件联立方程组求出,进而求出函数的解析式;(2)根据已知条件求出,进而得出不等式,利用换元法及一元二次不等式得出的范围,再根据指数与对数互化解指数不等式即可.【小问1详解】由,得,解得.所以的解析式为.【小问2详解】由(2)知,,所以,由,得,即,令,则,解得或所以,即,解得.所以不等式的解集为.21、(1)x≠-1,且x≠0,且x≠3(2)x=-2.【解析】(1)由集合中元素的互异性可得x≠3,且x2-2x≠x,x2-2x≠3,解得x≠-1,且x≠0,且x≠3.故元素x满足的条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业社会保险代缴合同3篇
- 科学计算语言Julia及MWORKS实践 课件 28-概率统计分布计算
- 科学计算语言Julia及MWORKS实践 课件 5-软件安装及界面介绍
- 海乘礼仪培训
- 酒店培训课题
- 2024年教师培训年度学习总结
- 翻译三级笔译综合能力模拟23
- 病人常见的心理护理
- 办公楼装修工程施工方案
- 玉林师范学院《数学分析》2022-2023学年第一学期期末试卷
- 宾馆饭店危险品安全管理制度(3篇)
- 天津市河西区2024-2025学年高一上学期11月期中考试 政治 含答案
- 重症医学科培训与考核制度
- 日本课件 人教版
- 统编版(2024新版)七年级上册历史第二单元测试卷(含答案)
- 北京市2024年中考道德与法治真题试卷(含答案)
- DB41T 1106-2015 高油酸花生生产技术规程
- 2024年保密知识测试试题附答案(综合卷)
- 沪科版2023-2024学年七年级上册数学期末考试试卷(一)含答案
- 产品研发与创新战略性合作协议书
- 辽宁省大连市中山区2024-2025学年七年级上学期期中考试英语试卷(含答案)
评论
0/150
提交评论