上海市高桥中学2023届高一数学第一学期期末考试试题含解析_第1页
上海市高桥中学2023届高一数学第一学期期末考试试题含解析_第2页
上海市高桥中学2023届高一数学第一学期期末考试试题含解析_第3页
上海市高桥中学2023届高一数学第一学期期末考试试题含解析_第4页
上海市高桥中学2023届高一数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设,是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则2.函数f(x)=|x-2|-lnx在定义域内零点的个数为()A.0 B.1C.2 D.33.已知函数,若,且当时,则的取值范围是A. B.C. D.4.已知cosα=,cos(α+β)=-,且α,β∈,则cos(α-β)的值等于A.- B.C.- D.5.已知,并且是终边上一点,那么的值等于A. B.C. D.6.设函数,点,,在的图像上,且.对于,下列说法正确的是()①一定是钝角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A①③ B.①④C.②③ D.②④7.若向量=,||=2,若·(-)=2,则向量与的夹角()A. B.C. D.8.下列命题中是真命题的个数为()①函数的对称轴方程是;②函数的一个对称轴方程是;③函数的图象关于点对称;④函数的值域为A1 B.2C.3 D.49.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.10.设集合,集合,则等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.下列说法中,所有正确说法的序号是_____终边落在轴上的角的集合是;

函数图象与轴的一个交点是;函数在第一象限是增函数;若,则12.已知,则________.13.两平行线与的距离是__________14.设函数,则是_________(填“奇函数”或“偶函数”);对于一定的正数T,定义则当时,函数的值域为_________15.若直线与圆相切,则__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数是定义在上的奇函数.(1)求实数的值;(2)解关于的不等式;(3)是否存在实数,使得函数在区间上的取值范围是?若存在,求出实数的取值范围;若不存在,请说明理由.17.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围18.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为()件.当时,年销售总收入为()万元;当时,年销售总收入为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资)(1)求(万元)与(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?19.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=3-6,乙城市收益Q与投入a(单位:万元)满足Q=a+2,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当甲城市投资50万元时,求此时公司的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?20.如图,在同一平面上,已知等腰直角三角形纸片的腰长为3,正方形纸片的边长为1,其中B、C、D三点在同一水平线上依次排列.把正方形纸片向左平移a个单位,.设两张纸片重叠部分的面积为S.(1)求关于a的函数解析式;(2)若,求a的值.21.求函数的最小正周期

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】利用可能平行判断,利用线面平行的性质判断,利用或与异面判断,与可能平行、相交、异面,判断.【详解】,,则可能平行,错;,,由线面平行的性质可得,正确;,,则,与异面;错,,,与可能平行、相交、异面,错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2、C【解析】分别画出函数y=lnx(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.3、B【解析】首先确定函数的解析式,然后确定的取值范围即可.【详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.本题选择B选项.【点睛】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.4、D【解析】∵α∈,∴2α∈(0,π).∵cosα=,∴cos2α=2cos2α-1=-,∴sin2α=,而α,β∈,∴α+β∈(0,π),∴sin(α+β)=,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)==.5、A【解析】由题意得:,选A.6、A【解析】结合,得到,所以一定为钝角三角形,可判定①正确,②错误;根据两点间的距离公式和函数的变化率的不同,得到,可判定③正确,④不正确.【详解】由题意,函数为单调递增函数,因为点,,在的图像上,且,不妨设,可得,则,因为,可得,又由因为,,,,所以,所以所以,所以一定为钝角三角形,所以①正确,②错误;由两点间的距离公式,可得,根据指数函数和一次函数的变化率,可得点到的变化率小于点到点的变化率不相同,所以,所以不可能为等腰三角形,所以③正确,④不正确.故选:A.7、A【解析】利用向量模的坐标求法可得,再利用向量数量积求夹角即可求解.【详解】由已知可得:,得,设向量与的夹角为,则所以向量与的夹角为故选:A.【点睛】本题考查了利用向量数量积求夹角、向量模的坐标求法,属于基础题.8、B【解析】根据二次函数的性质、三角函数的性质以及图象,对每个选项进行逐一分析,即可判断和选择.【详解】对①:函数的对称轴方程是,故①是假命题;对②:函数的对称轴方程是:,当时,其一条对称轴是,故②正确;对函数,其函数图象如下所示:对③:数形结合可知,该函数的图象不关于对称,故③是假命题;对④:数形结合可知,该函数值域为,故④为真命题.综上所述,是真命题的有2个.故选:.9、A【解析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【点睛】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.10、B【解析】由指数函数、对数函数的性质可得、,再由交集的运算即可得解.【详解】因为,,所以.故选:B.【点睛】本题考查了指数不等式的求解及对数函数性质的应用,考查了集合交集的运算,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】取值验证可判断;直接验证可判断;根据第一象限的概念可判断;由诱导公式化简可判断.【详解】中,取时,的终边在x轴上,故错误;中,当时,,故正确;中,第一象限角的集合为,显然在该范围内函数不单调;中,因为,所以,所以,故正确.故答案为:②④12、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.13、【解析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.14、①.偶函数②.【解析】利用函数奇偶性的定义判断的奇偶性;分别求出分段函数每段上的值域,从而求出的值域为.【详解】函数定义域为R,且,故是偶函数;,因为,所以,当时,,当时,,故的值域为故答案为:偶函数,15、【解析】由直线与圆相切可得圆心到直线距离等与半径,进而列式得出答案【详解】由题意得,,解得【点睛】本题考查直线与圆的位置关系,属于一般题三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)1(2)(3)存在,【解析】(1)根据求解并检验即可;(2)先证明函数单调性得在上为增函数,再根据奇偶性与单调性解不等式即可;(3)根据题意,将问题方程有两个不相等的实数根,再利用换元法,结合二次方程根的关系求解即可.【小问1详解】解:因为是定义在上的奇函数,所以,即,得.此时,,满足.所以【小问2详解】解:由(1)知,,且,则.∵,∴,,∴,即,故在上增函数∴原不等式可化为,即∴,∴∴,∴原不等式的解集为【小问3详解】解:设存在实数,使得函数在区间上的取值范围是,则,即,∴方程,即有两个不相等的实数根∴方程有两个不相等的实数根令,则,故方程有两个不相等的正根故,解得∴存在实数,使得函数在区间上的取值范围是,其中的取值范围为.17、(1)1(2)【解析】(1)根据奇函数的性质,,求参数后,并验证;(2)结合函数单调性和奇函数的性质,不等式变形得恒成立,再根据判别式求实数的取值范围【小问1详解】∵是定义域为的奇函数,∴,∴,则,满足,所以成立.【小问2详解】中,函数单调递减,单调递增,故在上单调递增原不等式化为,∴即恒成立,∴,解得18、(1)();(2)当年产量为件时,所得年利润最大,最大年利润为万元.【解析】(1)根据已知条件,分当时和当时两种情况,分别求出年利润的表达式,综合可得答案;(2)根据(1)中函数解析式,求出最大值点和最大值即可【详解】(1)由题意得:当时,,当时,,故();(2)当时,,当时,,而当时,,故当年产量为件时,所得年利润最大,最大年利润为万元.【点睛】本题主要考查函数模型及最值的求法,正确建立函数关系是解题的关键,属于常考题.19、(1)43.5(万元);(2)甲城市投资72万元,乙城市投资48万元.【解析】(1)直接代入收益公式进行计算即可.(2)由收益公式写出f(x)=-x+3+26,令t=,将函数转为关于t的二次函数求最值即可.【详解】(1)当x=50时,此时甲城市投资50万元,乙城市投资70万元,所以公司的总收益为3-6+×70+2=43.5(万元).(2)由题知,甲城市投资x万元,乙城市投资(120-x)万元,所以f(x)=3-6+(120-x)+2=-x+3+26,依题意得解得40≤x≤80.故f(x)=-x+3+26(40≤x≤80).令t=,则t∈[2,4],所以y=-t2+3t+26=-(t-6)2+44.当t=6,即x=72万元时,y的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.【点睛】本题考查函数模型的应用,考查函数最值的求解,属于基础题.20、(1);(2)或.【解析】(1)讨论、、分别求对应的,进而写

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论