




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.若函数的定义域是()A. B.C. D.2.设,,定义运算“△”和“”如下:,.若正数,,,满足,,则()A.△,△ B.,C.△, D.,△3.如图,向量,,的起点与终点均在正方形网格的格点上,则向量用基底,表示为A. B.C. D.4.若过两点的直线的斜率为1,则等于()A. B.C. D.5.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.6.已知当时,函数取最大值,则函数图象的一条对称轴为A. B.C. D.7.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.8.在平面直角坐标系中,设角的终边上任意一点的坐标是,它与原点的距离是,规定:比值叫做的正余混弦,记作.若,则()A. B.C. D.9.下列关于向量的叙述中正确的是()A.单位向量都相等B.若,,则C.已知非零向量,,若,则D.若,且,则10.已知,则()A. B.C.2 D.11.设,表示两条直线,,表示两个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则12.函数,x∈R在()A.上是增函数B.上是减函数C.上是减函数D.上是减函数二、填空题(本大题共4小题,共20分)13.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.14.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______15.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.16.已知,且,则的最小值为__________.三、解答题(本大题共6小题,共70分)17.已知角是第三象限角,,求下列各式的值:(1);(2).18.已知函数,(,且).(1)求的定义域,并判断函数的奇偶性;(2)对于,恒成立,求实数的取值范围.19.已知,为锐角,,.(1)求的值;(2)求的值.20.已知为奇函数,为偶函数,且.(1)求及的解析式及定义域;(2)如果函数,若函数有两个零点,求实数的取值范围.21.在直角坐标平面中,角α的始边为x轴正半轴,终边过点(-2,y),且tana=-,分别求y,sinα,cosα的值22.已知集合,.(1)若,求;(2)在①,②,③,这三个条件中任选一个作为条件,求实数的取值范围.(注意:如果选择多个条件分别解答,则按第一个解答计分)
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据偶次根号下非负,分母不等于零求解即可.【详解】解:要使函数有意义,则需满足不等式,解得:且,故选:C2、D【解析】根据所给运算,取特殊值检验即可排除ACB,得到答案.【详解】令满足条件,则,可排除A,C;令满足。则,排除B;故选:D3、C【解析】由题设有,所以,选C.4、C【解析】根据斜率的计算公式列出关于的方程,由此求解出.【详解】因为,所以,故选:C.5、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.6、A【解析】由最值确定参数a,再根据正弦函数性质确定对称轴【详解】由题意得因此当时,,选A.【点睛】本题考查三角函数最值与对称轴,考查基本分析求解能力,属基础题.7、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题8、D【解析】由可得出,根据题意得出,结合可得出关于和的方程组,解出这两个量,然后利用商数关系可求出的值.【详解】,则,由正余混弦的定义可得.则有,解得,因此,.故选:D.【点睛】本题考查三角函数的新定义,涉及同角三角函数基本关系的应用,根据题意建立方程组求解和的值是解题的关键,考查运算求解能力,属于基础题.9、C【解析】A选项:单位向量方向不一定相同,故A错误;B选项:当时,与不一定共线,故B错误;C选项:两边平方可得,故C正确;D选项:举特殊向量可知D错误.【详解】A选项:因为单位向量既有大小又有方向,但是单位向量方向不一定相同,故A错误;B选项:当时,,,但与不一定共线,故B错误;C选项:对两边平方得,,所以,故C正确;D选项:比如:,,,所以,,所以,但,故D错误.故选:C.10、B【解析】先求出,再求出,最后可求.【详解】因为,故,因为,故,而,故,所以,故,所以,故选:B11、D【解析】对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.12、B【解析】化简,根据余弦函数知识确定正确选项.【详解】,所以在上递增,在上递减.B正确,ACD选项错误.故选:B二、填空题(本大题共4小题,共20分)13、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.14、【解析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可15、【解析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【点睛】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.16、【解析】利用已知条件凑出,再根据“”的巧用,最后利用基本不等式即可求解.【详解】由,得,即.因为所以,,则=,当且仅当即时,等号成立.所以当时,取得最小值为.故答案为:.三、解答题(本大题共6小题,共70分)17、(1),(2)【解析】(1)由同角三角函数基本关系与诱导公式化简后求解(2)化为齐次式后由同角三角函数基本关系化简求值【小问1详解】,而角是第三象限角,故,则,【小问2详解】,将代入,原式18、(1)定义域为;奇函数;(2)时,;时,.【解析】(1)由对数的真数大于0,解不等式可得定义域;运用奇偶性的定义,即可得到结论;(2)对a讨论,,,结合对数函数的单调性,以及参数分离法,二次函数的最值求法,可得m的范围【详解】(1)由题意,函数,由,可得或,即定义域为;由,即有,可得为奇函数;2对于,恒成立,可得当时,,由可得的最小值,由,可得时,y取得最小值8,则,当时,,由可得的最大值,由,可得时,y取得最大值,则,综上可得,时,;时,【点睛】本题主要考查了函数的奇偶性的判定,以及对数的运算性质和二次函数的图象与性质的应用,其中解答中熟记函数的奇偶性的定义,以及对数的运算性质和二次函数的图象与性质的合理应用是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,试题有一定的综合性,属于中档试题.19、(1)(2)【解析】(1)根据同角三角函数关系求得,再用诱导公式化简即可求解;(2)利用余弦的两角差公式计算即可.【小问1详解】因为为锐角,所以,,.【小问2详解】因为,为锐角,所以,,所以,所以.20、(1),(2)【解析】(1)根据是奇函数,是偶函数,结合,以取代入上式得到,联立求解;(2)易得,,设,转化为,,根据时,与有两个交点,转化为函数,在有一个零点求解.【小问1详解】解:因为是奇函数,是偶函数,所以,,∵,①∴令取代入上式得,即,②联立①②可得,,【小问2详解】,,,可得,∴,.设,∴,,∵当时,与有两个交点,要使函数有两个零点,即使得函数,在有一个零点,(时,只有一个零点)即方程在内只有一个实根,∵,令,则使即可,∴或.∴的取值范围.21、.【解析】利用直接求出y的值;然后直接构造直角三角形利用即可得解【详解】解:∵角α的始边为x轴正半轴,终边过点(-2,y),且tana=-=,∴y=1,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 18282.1-2025医疗保健产品灭菌化学指示物第1部分:通则
- 商品采购合同协议书范本
- 19《剃头大师》(教学设计)-2024-2025学年语文三年级下册统编版
- 4 繁星 教学设计-2024-2025学年统编版语文四年级上册
- 销售行业劳动合同范本
- 度消防设备保养合同书
- 小企业劳动合同经典合同示例
- 独家经销合同正式签署
- 度商业银行外汇融资合同(模板五)
- 压浆合同范本
- 2025年茂名市高三年级第一次综合测试(一模)物理试卷(含答案)
- 2025年重症医学科(ICU)护理工作计划
- 四川省名校2025届高三第二次模拟考试英语试卷含解析
- 2024各科普通高中课程标准
- 《垂体瘤规范化诊治》课件
- 早产临床防治指南(2024版)解读
- 艾草种植基地合同(2篇)
- GB/T 30661.10-2024轮椅车座椅第10部分:体位支撑装置的阻燃性要求和试验方法
- 《电子商务法律法规》电子商务专业全套教学课件
- 空调制冷管道施工协议
- 《产后出血预防与处理指南(2023)》解读课件
评论
0/150
提交评论