版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.在正项等比数列中,若依次成等差数列,则的公比为A.2 B.C.3 D.2.如图,一个半径为3m的筒车按逆时针方向每分转1.5圈,筒车的轴心O距离水面的高度为2.2m,设筒车上的某个盛水筒P到水面的距离为d(单位:m)(在水面下则d为负数),若从盛水筒P刚浮出水面时开始计算时间,则d与时间t(单位:s)之间的关系为,则其中A,,K的值分别为()A.6,,2.2 B.6,,2.2C.3,,2.2 D.3,,2.23.已知函数f(x)=-log2x,则f(x)的零点所在的区间是()A.(0,1) B.(2,3)C.(3,4) D.(4,+∞)4.设集合U=R,,,则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤0}5.下列命题中正确的是()A.第一象限角小于第二象限角 B.锐角一定是第一象限角C.第二象限角是钝角 D.平角大于第二象限角6.已知命题“,”是假命题,则实数的取值范围为()A. B.C. D.7.若斜率为2的直线经过,,三点,则a,b的值是A., B.,C., D.,8.若a,b都为正实数且,则的最大值是()A. B.C. D.9.设m,n是两条不同直线,,是两个不同的平面,下列命题正确的是A.,且,则B.,,,,则C.,,,则D.,且,则10.函数y=|x2-1|与y=a的图象有4个交点,则实数a的取值范围是A.(0,) B.(-1,1)C.(0,1) D.(1,)11.把表示成,的形式,则的值可以是()A. B.C. D.12.已知,,,则a,b,c的大小关系正确的是()A.a>b>c B.b>c>aC.c>b>a D.c>a>b二、填空题(本大题共4小题,共20分)13.函数的反函数为___________14.函数的值域为___________.15.如图,在中,,以为圆心、为半径作圆弧交于点.若圆弧等分的面积,且弧度,则=________.16.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.三、解答题(本大题共6小题,共70分)17.已知函数,.(1)求函数的定义域;(2)求不等式的解集.18.已知角的顶点在坐标原点,始边与x轴正半轴重合,终边经过点.(1)求,;(2)求的值.19.已知A(2,0),B(0,2),,O为坐标原点(1),求sin2θ的值;(2)若,且θ∈(-π,0),求与的夹角20.某工厂以xkg/h的速度生产运输某种药剂(生产条件要求边生产边运输且3<x≤10),每小时可以获得的利润为100(2x+1+(1)要使生产运输该药品3h获得的利润不低于4500元,求x(2)x为何值时,每小时获得的利润最小?最小利润是多少?21.如图,在边长为2的正方形ABCD中,E,F分别是边AB,BC的中点,用向量的方法(用其他方法解答正确同等给分)证明:22.已知函数.(1)判断函数的奇偶性;(2)求证:函数在为单调增函数;(3)求满足的的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】由等差中项的性质可得,又为等比数列,所以,化简整理可求出q的值【详解】由题意知,又为正项等比数列,所以,且,所以,所以或(舍),故选A【点睛】本题考查等差数列与等比数列的综合应用,熟练掌握等差中项的性质,及等比数列的通项公式是解题的关键,属基础题2、D【解析】根据实际含义分别求的值即可.【详解】振幅即为半径,即;因为逆时针方向每分转1.5圈,所以;;故选:D.3、C【解析】先判断出函数的单调性,然后得出的函数符号,从而得出答案.【详解】由在上单调递减,在上单调递减所以函数在上单调递减又根据函数f(x)在上单调递减,由零点存在定理可得函数在(3,4)之间存在零点.故选:C4、D【解析】先求出集合A,B,再由图可知阴影部分表示,从而可求得答案【详解】因为等价于,解得,所以,所以或,要使得函数有意义,只需,解得,所以则由韦恩图可知阴影部分表示.故选:D.5、B【解析】根据象限角的定义及锐角、钝角及平角的大小逐一分析判断即可得解.【详解】解:为第一象限角,为第二象限角,故A错误;因为锐角,所以锐角一定是第一象限角,故B正确;因为钝角,平角,为第二象限角,故CD错误.故选:B.6、D【解析】由题意可知,命题“,”是真命题,再利用一元二次不等式的解集与判别式的关系即可求出结果.【详解】由于命题“,”是假命题,所以命题“,”是真命题;所以,解得.故选:D.【点睛】本题考查了简易逻辑的判定、一元二次不等式的解集与判别式的关系,考查了推理能力与计算能力,属于基础题7、C【解析】根据两点间斜率公式列方程解得结果.【详解】斜率为直线经过,,三点,∴,解得,.选C.【点睛】本题考查两点间斜率公式,考查基本求解能力,属基础题.8、D【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D9、D【解析】对每一个命题逐一判断得解.【详解】对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面或相交,故A不正确;对于B,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以B不成立对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正确;对于D,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题D正确故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.10、C【解析】作函数图象,根据函数图像确定实数a的取值范围.【详解】作函数图象,根据函数图像得实数a的取值范围为(0,1),选C.【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.11、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B12、C【解析】根据对数函数的单调性和中间数可得正确的选项.【详解】因为,故即,而,故,即,而,故,故即,故,故选:C二、填空题(本大题共4小题,共20分)13、【解析】先求出函数的值域有,再得出,从而求得反函数.【详解】由,可得由,则,所以故答案为:.14、【解析】由函数定义域求出的取值范围,再由的单调性即可得解.【详解】函数的定义域为R,而,当且仅当x=0时取“=”,又在R上单调递减,于是有,所以函数的值域为.故答案为:15、【解析】设扇形的半径为,则扇形的面积为,直角三角形中,,,面积为,由题意得,∴,∴,故答案为.点睛:本题考查扇形的面积公式及三角形的面积公式的应用,考查学生的计算能力,属于基础题;设出扇形的半径,求出扇形的面积,再在直角三角形中求出高,计算直角三角形的面积,由条件建立等式,解此等式求出与的关系,即可得出结论.16、5【解析】利用平移变换和反函数的定义得到的解析式,进而得解.【详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【点睛】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.三、解答题(本大题共6小题,共70分)17、(1)(2)答案见解析【解析】(1)根据对数的真数大于零可得出关于的不等式组,由此可解得函数的定义域;(2)将所求不等式变形为,分、两种情况讨论,利用对数函数的单调性结合函数的定义域可求得原不等式的解集.【小问1详解】解:,则有,解得,故函数的定义域为.【小问2详解】解:当时,函数在上为增函数,由,可得,所以,解得,此时不等式的解集为;当时,函数在上为减函数,由,可得,所以,解得,此时不等式的解集为.综上所述,当时,不等式的解集为;当时,不等式的解集为.18、(1),;(2).【解析】(1)根据三角函数的定义,即可求出结果;(2)利用诱导公式对原式进行化简,代入,的值,即可求出结果.【详解】解:(1)因为角的终边经过点,由三角函数的定义知,(2)诱导公式,得.19、(1);(2)【解析】分析:(1)先根据向量数量积得sinθ+cosθ值,再平方得结果,(2)先根据向量的模得cosθ,即得C点坐标,再根据向量夹角公式求结果.详解:(1)∵=(cosθ,sinθ)-(2,0)=(cosθ-2,sinθ),=(cosθ,sinθ)-(0,2)=(cosθ,sinθ-2),=cosθ(cosθ-2)+sinθ(sinθ-2)=cos2θ-2cosθ+sin2θ-2sinθ=1-2(sinθ+cosθ)=-∴sinθ+cosθ=,∴1+2sinθcosθ=,∴sin2θ=-1=-.(2)∵=(2,0),=(cosθ,sinθ),∴+=(2+cosθ,sinθ),∵|+|=,所以4+4cosθ+cos2θ+sin2θ=7,∴4cosθ=2,即cosθ=.∵-π<θ<0,∴θ=-,又∵=(0,2),=,∴cos〈,〉=,∴〈,〉=.点睛:向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,通过解三角求得结果.20、(1)[6,10];(2)当x为4kg/h时,每小时获得的利润最小,最小利润为1300元【解析】(1)由题设可得2x+1+8x-2≥15,结合3<x≤10求不等式的解集即可(2)应用基本不等式求y=100(2x+1+8x-2)的最小值,并求出对应的x【小问1详解】依题意得:3×100(2x+1+8x-2)≥4500,即2x+1+8x-2由3<x≤10,故8x-2>0,可得x2-9x+18≥0,即(x-3)(x-6)≥0,解得x≤3或x≥6∴x的取值范围为[6,10].【小问2详解】设每小时获得的利润为y.y=100(2x+1+8x-2)=100[2(x-2)+8x-2+5]≥100[22(x-2)(8x-2)+5]=100(8+5)=1300,当2(x-2)=于是当生产运输速度为4kg/h,每小时获得的利润最小,最小值为1300元21、证明见解析【解析】建立直角坐标系,先写出,再按照数量积的坐标运算证明即可.【详解】如图,以A原点,AB为x轴,AD为y轴建立直角坐标系,则,,故.22、(1)为奇函数;(2)证明见解析;(3).【解析】(Ⅰ)求出定义域
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产力透视与提升
- 2024消防工程改造与升级合同
- 梦想砌成家园
- 金融业务全景解析
- 2024深圳小微企业社保补贴申报流程优化与合同条款3篇
- 基础设施建设战略合作协议书(2篇)
- 大型展会推广合同(2篇)
- 2024年高铁站房建设土木工程承包合同范本3篇
- 2024房屋租赁合同
- 4 不做“小马虎”第二课时(说课稿 )2023-2024学年统编版道德与法治一年级下册 第一单元 我的好习惯
- 年度得到 · 沈祖芸全球教育报告(2024-2025)
- 2025河北机场管理集团限公司招聘39人高频重点提升(共500题)附带答案详解
- (2024-2025)新人教版八年级上册语文期末测试卷及答案
- 35KV变电站地质勘察与施工方案
- 2025年中国社会科学院外国文学研究所专业技术人员招聘3人历年管理单位笔试遴选500模拟题附带答案详解
- 运输公司安全隐患大排查整治行动方案
- 湖北省十堰市2023-2024学年高二上学期期末调研考试 物理 含答案
- 传染病和突发公共卫生事件报告和处置培训课件
- 道具设计安装合同模板
- 2024至2030年中国白内障手术耗材行业投资前景及策略咨询研究报告
- 体育单杠课件教学课件
评论
0/150
提交评论