版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.下列表示正确的是A.0∈N B.∈NC.–3∈N D.π∈Q2.已知集合,,则A.或 B.或C. D.或3.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为A. B.C. D.4.在的图象大致为()A. B.C. D.5.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度6.已知向量,,,则A. B.C. D.7.设是定义在实数集上的函数,且,若当时,,则有()A. B.C. D.8.已知集合A={t2+s2|t,s∈Z},且x∈A,y∈A,则下列结论正确的是Ax+y∈AB.x-y∈AC.xy∈AD.9.下列函数中,最小正周期为的奇函数是()A. B.C. D.10.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线,与圆的位置关系是“平行相交”,则实数的取值范围为A. B.C. D.11.若,,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限12.满足的集合的个数为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.在下列四个函数中:①,②,③,④.同时具备以下两个性质:(1)对于定义域上任意x,恒有;(2)对于定义域上的任意、,当时,恒有的函数是______(只填序号)14.若,且,则上的最小值是_________.15.若函数在上存在零点,则实数的取值范围是________16.,,且,则的最小值为______.三、解答题(本大题共6小题,共70分)17.设集合,,(1),求;(2)若“”是“”的充分条件,求的取值范围18.已知函数.(1)求;(2)设,,求的值.19.如图所示四棱锥中,底面,四边形中,,,,求四棱锥的体积;求证:平面;在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由20.已知集合,(1)当时,求;(2)若,求的取值范围21.已知函数为奇函数(1)求的值;(2)判断的单调性,并用定义证明;(3)解不等式22.已知.(1)若,且,求的值.(2)若,且,求的值.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据自然数集以及有理数集的含义判断数与集合关系.【详解】N表示自然数集,在A中,0∈N,故A正确;在B中,,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误故选A【点睛】本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.2、A【解析】进行交集、补集的运算即可.【详解】;,或故选A.【点睛】考查描述法的定义,以及交集、补集的运算.3、C【解析】连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos∠DFD==.4、C【解析】先由函数为奇函数可排除A,再通过特殊值排除B、D即可.【详解】由,所以为奇函数,故排除选项A.又,则排除选项B,D故选:C5、B【解析】直接利用三角函数的平移变换求解.【详解】因函数y=cos,所以要得到函数y=cos的图象,只需将函数y=cos2的图象向左平移个单位长度,故选:B【点睛】本题主要考查三角函数的图象的平移变换,属于基础题.6、D【解析】A项:利用向量的坐标运算以及向量共线的等价条件即可判断.B项:利用向量模的公式即可判断.C项:利用向量的坐标运算求出数量积即可比较大小.D项:利用向量加法的坐标运算即可判断.【详解】A选项:因为,,所以与不共线.B选项:,,显然,不正确.C选项:因为,所以,不正确;D选项:因为,所以,正确;答案为D.【点睛】主要考查向量加、减、数乘、数量积的坐标运算,还有向量模的公式以及向量共线的等价条件的运用.属于基础题.7、B【解析】由f(2-x)=f(x)可知函数f(x)的图象关于x=1对称,所以,,又当x≥1时,f(x)=lnx单调递增,所以,故选B8、C【解析】∵集合A={t2+s2∣∣t,s∈Z},∴1∈A,2∈A,1+2=3∉A,故A“x+y∈A”错误;又∵1−2=−1∉A,故B“x−y∈A”错误;又∵,故D“∈A”错误;对于C,由,设,且.则.且,所以.故选C.9、C【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简.【详解】A选项:,其定义域为,,为偶函数,其最小正周期为,故A错误.B选项:,其最小正周期为,函数定义域为,,函数不是奇函数,故B错误.C选项:其定义域为,,函数为奇函数,其最小正周期为,故C正确.D选项:函数定义域为,,函数为偶函数,其最小正周期,故D错误.故选:C.10、D【解析】根据定义先求出l1,l2与圆相切,再求出l1,l2与圆外离,结合定义即可得到答案.【详解】圆C的标准方程为(x+1)2+y2=b2.由两直线平行,可得a(a+1)-6=0,解得a=2或a=-3.当a=2时,直线l1与l2重合,舍去;当a=-3时,l1:x-y-2=0,l2:x-y+3=0.由l1与圆C相切,得,由l2与圆C相切,得.当l1、l2与圆C都外离时,.所以,当l1、l2与圆C“平行相交”时,b满足,故实数b的取值范围是(,)∪(,+∞)故选D.11、B【解析】应用诱导公式可得,,进而判断角的终边所在象限.【详解】由题设,,,所以角的终边在第二象限.故选:B12、B【解析】列举出符合条件的集合,即可得出答案.【详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【点睛】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.二、填空题(本大题共4小题,共20分)13、③④【解析】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.分别判断四个函数的单调性和奇偶性即可.【详解】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.①,f(x)奇函数,在定义域不单调;②,f(x)是偶函数,在定义域R内不单调;③,f(x)是奇函数,且在定义域R上单调递减;④,满足为奇函数,且根据指数函数性质可知其在定义域R上为减函数.综上,满足条件(1)(2)的函数有③④.故答案为:③④.14、【解析】将的最小值转化为求的最小值,然后展开后利用基本不等式求得其最小值【详解】解:因为,且,,当且仅当时,即,时等号成立;故答案为:15、【解析】分和并结合图象讨论即可【详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:16、3【解析】根据基本不等式“1”的用法求解即可.【详解】解:解法一:因为所以当且仅当时等号成立.解法二:设,,则,所以当且仅当时等号成立.故答案为:三、解答题(本大题共6小题,共70分)17、(1)(2)或【解析】(1)先求集合B的补集,再与集合A取交集;(2)把“”是“”的充分条件转化为集合A与B之间的关系再求解的取值范围【小问1详解】时,,又故【小问2详解】由题意知:“”是“”的充分条件,即当时,,,满足题意;当时,,欲满足则必须解之得综上得的取值范围为或18、(1);(2)【解析】⑴将代入,利用特殊角的三角函数值即可求解⑵根据正弦和余弦的二倍角公式将函数化简,根据的取值范围,求得的值,然后代入到求解即可解析:(1).(2)由,得,因为,所以,因此,所以.19、(1)4;(2)见解析;(3)不存在.【解析】利用四边形是直角梯形,求出,结合底面,利用棱锥的体积公式求解即可求;先证明,,结合,利用线面垂直的判定定理可得平面;用反证法证明,假设存在点异于点使得平面证明平面平面,与平面与平面相交相矛盾,从而可得结论【详解】显然四边形ABCD是直角梯形,又底面平面ABCD,平面ABCD,在直角梯形ABCD中,,,,即又,平面;不存在,下面用反证法进行证明假设存在点异于点使得平面PAD,且平面PAD,平面PAD,平面PAD又,平面平面PAD而平面PBC与平面PAD相交,得出矛盾【点睛】本题考查直线与平面垂直的判定,棱锥的体积,平面与平面平行的判定定理,考查空间想象能力,逻辑推理能力.证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20、(1);(2).【解析】(1)当时,可求出集合,再求出集合,取交集即可得到答案.(2)根据,可得,分别求出集合和集合,集合是集合的子集,即可得到答案.【小问1详解】当时,集合,,即集合,,故.【小问2详解】,集合,集合,.21、(1)(2)单调递减,证明见解析(3)【解析】(1)根据奇函数性质求解即可;(2)根据定义法严格证明单调性,注意式子正负的判断即可求解;(3)根据奇函数性质化简不等式得,再根据函数单调性得到,代入函数解不等式即可求解.【小问1详解】因为为奇函数且的定义域为,所以由奇函数性质得,解得,当时,,,即,符合题意.【小问2详解】在上单调递减,证明如下:由(1)知,,,时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住宅装修噪音控制合同
- 安防监控居间合同
- 医疗机构装修合同样本套餐
- 剧院装修人工合同
- 咖啡馆翻新抵房租合同范本
- 国际快递合同特色条款揭秘
- 化工厂装修装饰工程合同
- 2024至2030年中国桥式工程塑料拖链行业投资前景及策略咨询研究报告
- 2024年中国轨道平移滑车装置市场调查研究报告
- 2024年中国压花刀具市场调查研究报告
- MOOC 中国自然美景及其地质成因-河南理工大学 中国大学慕课答案
- 《摆的快慢》说课稿公开课课件
- 公安民警矛盾纠纷调解培训
- MOOC 生活微生物圈-淮阴工学院 中国大学慕课答案
- 工业设计史论全
- MOOC 空中机器人-浙江大学 中国大学慕课答案
- MOOC 成长中的音乐徜徉-浙江师范大学 中国大学慕课答案
- 车辆运输保障方案
- 中医药纳米技术与缓控释制剂
- 食品生产企业食品安全风险日管控、周排查、月调度工作制度
- 《四川九寨沟》课件
评论
0/150
提交评论