2022-2023学年湖南省邵阳市邵东县第三中高一上数学期末预测试题含解析_第1页
2022-2023学年湖南省邵阳市邵东县第三中高一上数学期末预测试题含解析_第2页
2022-2023学年湖南省邵阳市邵东县第三中高一上数学期末预测试题含解析_第3页
2022-2023学年湖南省邵阳市邵东县第三中高一上数学期末预测试题含解析_第4页
2022-2023学年湖南省邵阳市邵东县第三中高一上数学期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.如果幂函数的图象经过点,则在定义域内A.为增函数 B.为减函数C.有最小值 D.有最大值2.若方程则其解得个数为()A.3 B.4C.6 D.53.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.4.已知,,则下列说法正确的是()A. B.C. D.5.设奇函数在上为增函数,且,则不等式的解集为A. B.C. D.6.直线与圆相切,则的值为()A. B.C. D.7.已知幂函数的图象过点(4,2),则()A.2 B.4C.2或-2 D.4或-48.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数,则函数图象的对称中心为()A. B.C. D.9.已知A(-4,2,3)关于xOz平面的对称点为,关于z轴的对称点为,则等于()A.8 B.12C.16 D.1910.已知x,y满足,求的最小值为()A.2 B.C.8 D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.的值__________.12.圆关于直线的对称圆的标准方程为___________.13.已知函数,则不等式的解集为______14.若函数(其中)在区间上不单调,则的取值范围为__________.15.在中,,,与的夹角为,则_____三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,(1)求最小正周期;(2)求的单调递增区间;(3)当时,求的最大值和最小值17.知,.(Ⅰ)若为真命题,求实数的取值范围;(Ⅱ)若为成立的充分不必要条件,求实数的取值范围.18.已知函数f(x)=(1)求f(x)的最小正周期;(2)当x∈[-π6,19.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围20.已知函数的值域为,函数.(Ⅰ)求;(Ⅱ)当时,若函数有零点,求的取值范围,并讨论零点的个数.21.已知函数.(1)若,求的解集;(2)若为锐角,且,求的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】由幂函数的图象经过点,得到,由此能求出函数的单调性和最值【详解】解:幂函数的图象经过点,,解得,,在递减,在递增,有最小值,无最大值故选【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答2、C【解析】分别画出和的图像,即可得出.【详解】方程,即,令,,易知它们都是偶函数,分别画出它们的图像,由图可知它们有个交点.故选:.【点睛】本题主要考查的是函数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题.3、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.4、C【解析】根据已知条件逐个分析判断【详解】对于A,因为,所以A错误,对于B,因为,所以集合A不是集合B的子集,所以B错误,对于C,因为,,所以,所以C正确,对于D,因为,,所以,所以D错误,故选:C5、D【解析】由f(x)为奇函数可知,=<0.而f(1)=0,则f(-1)=-f(1)=0.当x>0时,f(x)<0=f(1);当x<0时,f(x)>0=f(-1)又∵f(x)在(0,+∞)上为增函数,∴奇函数f(x)在(-∞,0)上为增函数所以0<x<1,或-1<x<0.选D点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内6、D【解析】由圆心到直线的距离等于半径可得【详解】由题意圆标准方程为,圆心坐标为,半径为1,所以,解得故选:D7、B【解析】设幂函数代入已知点可得选项.【详解】设幂函数又函数过点(4,2),,故选:B.8、A【解析】根据题意并结合奇函数的性质即可求解.【详解】由题意得,设函数图象的对称中心为,则函数为奇函数,即,则,解得,故函数图象的对称中心为.故选:.9、A【解析】由题可知∴故选A10、C【解析】利用两点间的距离公式结合点到直线的距离公式即可求解.【详解】解:表示点与直线上的点的距离的平方所以的最小值为点到直线的距离的平方所以最小值为:故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、1【解析】由,结合辅助角公式可知原式为,结合诱导公式以及二倍角公式可求值.【详解】解:.故答案为:1.【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.12、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题13、【解析】分x小于等于0和x大于0两种情况根据分段函数分别得到f(x)的解析式,把得到的f(x)的解析式分别代入不等式得到两个一元二次不等式,分别求出各自的解集,求出两解集的并集即可得到原不等式的解集【详解】解:当x≤0时,f(x)=x+2,代入不等式得:x+2≥x2,即(x-2)(x+1)≤0,解得-1≤x≤2,所以原不等式的解集为[-1,0];当x>0时,f(x)=-x+2,代入不等式得:-x+2≥x2,即(x+2)(x-1)≤0,解得-2≤x≤1,所以原不等式的解集为[0,1],综上原不等式的解集为[-1,1].故答案为[-1,1]【点睛】此题考查了不等式的解法,考查了转化思想和分类讨论的思想,是一道基础题14、【解析】化简f(x),结合正弦函数单调性即可求ω取值范围.【详解】,x∈,①ω>0时,ωx∈,f(x)在不单调,则,则;②ω<0时,ωx∈,f(x)在不单调,则,则;综上,ω的取值范围是.故答案为:.15、【解析】利用平方运算可将问题转化为数量积和模长的运算,代入求得,开方得到结果.【详解】【点睛】本题考查向量模长的求解问题,关键是能够通过平方运算将问题转变为向量的数量积和模长的运算,属于常考题型.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2),(3)最大值为,最小值为【解析】(1)由周期公式直接可得;(2)利用正弦函数的单调区间解不等式可得;(3)先根据x的范围求出的范围,然后由正弦函数的性质可得.【小问1详解】的最小正周期【小问2详解】由,,得,.所以函数的单调递增区间为,【小问3详解】∵,∴当,即时,当,即时,.17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)解不等式即得;(Ⅱ)再求出不等式的解,由充分不必要条件与集合包含的关系得出不等关系,可求得结论【详解】(Ⅰ)若为真命题,解不等式得,实数的取值范围是.(Ⅱ)解不等式得,为成立的充分不必要条件,是的真子集.且等号不同时取到,得.实数的取值范围是.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含18、(1)π(2)x∈-π6,π3时,f(x)【解析】(1)对f(x)化简后得到fx=sin2x-π6【小问1详解】f(x)=所以f(x)的最小正周期为2【小问2详解】当x∈-π故当-π2⩽2x-π6当π2⩽2x-π6⩽当2x-π6∈所以-32⩽f(x)⩽119、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,只需,解得,(iii)当,即时,函数在上单调递减,由对称性知,在上单调递减,从而在上单调递减.此时要使,只需,解得,综上可知,实数的取值范围是20、(Ⅰ);(Ⅱ)答案见详解.【解析】(Ⅰ)对分段函数求值域,分别求出每一段函数的值域,再求其并集即可;(Ⅱ)函数有零点,即表示方程有根,与函数图像有交点,因而将换元,利用二次函数性质求出其值域,再数形结合讨论零点个数即可.【详解】(Ⅰ)如下图所示:当时,;当时,,所以函数的值域为;(Ⅱ)若函数有零点,即方程有根,即与函数图像有交点,令,,当时,,此时,即函数值域为,故而:当时,函数有零点,且当或时,函数有一个零点;当时,函数有两个零点.【点睛】(1)对分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论