福建省泉州市洛江区马甲中学2022年高一上数学期末复习检测试题含解析_第1页
福建省泉州市洛江区马甲中学2022年高一上数学期末复习检测试题含解析_第2页
福建省泉州市洛江区马甲中学2022年高一上数学期末复习检测试题含解析_第3页
福建省泉州市洛江区马甲中学2022年高一上数学期末复习检测试题含解析_第4页
福建省泉州市洛江区马甲中学2022年高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则是第()象限角A.一 B.二C.三 D.四2.对于直线的截距,下列说法正确的是A.在y轴上的截距是6 B.在x轴上的截距是6C.在x轴上的截距是3 D.在y轴上的截距是-33.若,分别是方程,的解,则关于的方程的解的个数是()A B.C. D.4.设函数y=,当x>0时,则y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值85.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到6.若单位向量,满足,则向量,夹角的余弦值为()A. B.C. D.7.已知函数,则使成立的x的取值范围是()A. B.C. D.8.已知函数是定义域为R的奇函数,且,当时,,则等于()A.-2 B.2C. D.-9.下列函数中,与的奇偶性相同,且在上单调性也相同的是()A. B.C. D.10.若a>b,则下列各式正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线l与平面α所成角为60°,l∩α=A,则m与l所成角的取值范围是_______.12.已知且,且,函数的图象过定点A,A在函数的图象上,且函数的反函数过点,则______.13.若扇形的面积为,半径为1,则扇形的圆心角为___________.14.已知关于的方程在有解,则的取值范围是________15.已知,,则____________16.设,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为推动治理交通拥堵、停车难等城市病,不断提升城市道路交通治理能力现代化水平,乐山市政府决定从2021年6月1日起实施“差别化停车收费”,收费标准讨论稿如下:A方案:首小时内3元,2-4小时为每小时1元(不足1小时按1小时计),以后每半小时1元(不足半小时按半小时计);单日最高收费不超过18元.B方案:每小时1.6元(1)分别求两个方案中,停车费y(元)与停车时间(小时)之间的函数关系式;(2)假如你的停车时间不超过4小时,方案A与方案B如何选择?并说明理由(定义:大于或等于实数x的最小整数称为x的向上取整部分,记作,比如:,)18.若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.(1)研究并证明函数在区间上的单调性;(2)若实数满足不等式,求实数的取值范围.19.已知奇函数(a为常数)(1)求a的值;(2)若函数有2个零点,求实数k的取值范围;20.已知函数.(1)若且的最小值为,求不等式的解集;(2)若当时,不等式恒成立,求实数的取值范围.21.已知函数(R).(1)当取什么值时,函数取得最大值,并求其最大值;(2)若为锐角,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由终边位置可得结果.【详解】,终边落在第三象限,为第三象限角.故选:C.2、A【解析】令,得y轴上的截距,令得x轴上的截距3、B【解析】∵,分别是方程,的解,∴,,∴,,作函数与的图象如下:结合图象可以知道,有且仅有一个交点,故,即分类讨论:()当时,方程可化为,计算得出,()当时,方程可化,计算得出,;故关于的方程的解的个数是,本题选择B选项.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围4、B【解析】由均值不等式可得答案.【详解】由,当且仅当,即时等号成立.当时,函数的函数值趋于所以函数无最大值,有最小值4故选:B5、D【解析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【详解】变换到,需要向右平移个单位.故选:D【点睛】函数图像平移异名化同名的公式:,.6、A【解析】将平方可得,再利用向量夹角公式可求出.【详解】,是单位向量,,,,即,即,解得,则向量,夹角的余弦值为.故选:A.7、C【解析】考虑是偶函数,其单调性是关于y轴对称的,只要判断出时的单调性,利用对称关系即可.【详解】,是偶函数;当时,由于增函数,是增函数,所以是增函数,是关于y轴对称的,当时,是减函数,作图如下:欲使得,只需,两边取平方,得,解得;故选:C.8、B【解析】根据奇函数性质和条件,求得函数的周期为8,再化简即可.【详解】函数是定义域为R的奇函数,则有:又,则则有:可得:故,即的周期为则有:故选:B9、C【解析】先求得函数的奇偶性和单调性,结合选项,利用函数的性质和单调性的定义,逐项判定,即可求解.【详解】由题意,函数满足,所以函数为偶函数,当时,可得,结合指数函数的性质,可得函数为单调递增函数,对于A中,函数为奇函数,不符合题意;对于B中,函数为非奇非偶函数函数,不符合题意;对于C中,函数的定义域为,且满足,所以函数为偶函数,设,且时,则,因为且,所以,所以,即,所以在为增函数,符合题意;对于D中,函数为非奇非偶函数函数,不符合题意.故选:C.10、A【解析】由不等式的基本性质,逐一检验即可【详解】因为a>b,所以a-2>b-2,故选项A正确,2-a<2-b,故选项B错误,-2a<-2b,故选项C错误,a2,b2无法比较大小,故选项D错误,故选A【点睛】本题考查了不等式的基本性质,意在考查学生对该知识的理解掌握水平.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,直线l与平面α所成角的范围,即可求出结果【详解】由于直线l与平面α所成角为60°,直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,而异面直线所成角的范围是(0,],直线m在平面α内,且与直线l异面,故m与l所成角的取值范围是.故答案为【点睛】本题考查直线和平面所成的角的定义和范围,判断直线与平面所成角是直线与平面α内所有直线成的角中最小的一个,是解题的关键12、8【解析】由图象平移变换和指数函数的性质可得点A坐标,然后结合反函数的性质列方程组可解.【详解】函数的图象可以由的图象向右平移2各单位长度,再向上平移3个单位长度得到,故点A坐标为,又的反函数过点,所以函数过点,所以,解得,所以.故答案为:813、【解析】直接根据扇形的面积公式计算可得答案【详解】设扇形的圆心角为,因为扇形的面积为,半径为1,所以.解得,故答案为:14、【解析】将原式化为,然后研究函数在上的值域即可【详解】解:由,得,令,令,因为,所以,所以,即,因为,所以函数可化为,该函数在上单调递增,所以,所以,所以,所以的取值范围是,故答案为:15、【解析】,,考点:三角恒等变换16、1【解析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解.【详解】由,可得,,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)当停车时间不超过3.75小时,选B方案;当停车时间大于3.75小时不超过4小时,选A方案,理由见解析.【解析】(1)根据题意可得答案;(2)根据(1)的答案分析即可.【小问1详解】根据题意可得:A方案:当,;当时,当时,;当,所以B方案:【小问2详解】显然当时,;又因为,,所以存在,使得,即,解得故当停车时间不超过3.75小时,选B方案;当停车时间大于3.75小时不超过4小时,选A方案18、(1)见解析;(2).【解析】(1)设,则,所以,根据在区间上是单调递增,可得,从而可得函数在区间上是单调递减函数;(2)先证明在区间上是单调递增的函数,根据奇偶性可得在区间上是单调递增的函数,再将变形为,可得,进而可得实数的取值范围.试题解析:(1)设,显然恒成立.设,则,,,则,所以,又在区间上是单调递增,所以,即,所以函数在区间上是单调递减函数.(2)因为是定义在实数集上的奇函数,所以,又因为在区间上是单调递增的函数,所以当时,,当时,,,所以当,有.设,则,所以,即,所以,所以在区间上是单调递增函数.综上所述,在区间上是单调递增的函数.所以由得,即所以.【方法点睛】本题主要考查函数的奇偶性的应用以及抽象函数与复合函数的单调性,属于难题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号(往往先分解因式,再判断各因式的符号),可得在已知区间上是增函数,可得在已知区间上是减函数.19、(1)(2)【解析】(1)由奇函数中求解即可;(2)函数有2个零点,可转为为也即函数与的图象有两个交点,结合图象即可求解【小问1详解】由是上的奇函数,可得,所以,解得,经检验满足奇函数,所以;【小问2详解】函数有2个零点,可得方程函数有2个根,即有2个零点,也即函数与的图象有两个交点,由图象可知所以实数得取值范围是20、(1);(2).【解析】(1)利用二次函数的最值可求得正数的值,再利用二次不等式的解法解不等式,即可得解;(2)令,根据题意可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:的图象是对称轴为,开口向上的抛物线,所以,,因为,解得,由得,即,得,因此,不等式的解集为.【小问2详解】解:由得,设函数,因为函数的图象是开口向上的抛物线,要使当时,不等式恒成立,即在上恒成立,则,可得,解得.21、(1)Z)时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论