甘肃省武威十八中2022年高一上数学期末统考模拟试题含解析_第1页
甘肃省武威十八中2022年高一上数学期末统考模拟试题含解析_第2页
甘肃省武威十八中2022年高一上数学期末统考模拟试题含解析_第3页
甘肃省武威十八中2022年高一上数学期末统考模拟试题含解析_第4页
甘肃省武威十八中2022年高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数的最小正周期是()A.1 B.2C. D.2.已知函数,则在下列区间中必有零点的是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)3.若函数是幂函数,且其图象过点,则函数的单调增区间为A. B.C. D.4.如图,某池塘里浮萍的面积(单位:)与时间t(单位:月)的关系为,关于下列说法不正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积超过D.若浮萍蔓延到所经过的时间分别是,、,则5.已知集合,集合,则()A. B.C. D.6.已知全集,集合,,则()A. B.C D.7.设y1=0.4,y2=0.5,y3=0.5,则()A.y3<y2<y1 B.y1<y2<y3C.y2<y3<y1 D.y1<y3<y28.设集合,则A. B.C. D.9.已知,则等于()A. B.C. D.10.已知,则的取值范围是()A. B.C. D.11.已知,则的值为()A B.1C. D.12.函数f(x)=x-的图象关于()Ay轴对称 B.原点对称C.直线对称 D.直线对称二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知集合,则集合的子集个数为___________.14.已知函数是定义在上的奇函数,当时,,则__________.15.已知,若,则________16.若,则_________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数f(x)=+ln(5-x)的定义域为A,集合B={x|2x-a≥4}.(Ⅰ)当a=1时,求集合A∩B;(Ⅱ)若A∪B=B,求实数a的取值范围.18.已知全集,若集合,.(1)若,求,;(2)若,求实数的取值范围.19.已知函数且图象经过点(1)求实数的值;(2)若,求实数的取值范围.20.已知,,函数.(1)当时,求不等式的解集;(2)若,求的最小值,并求此时a,b的值.21.如图,在几何体ABCDEF中,平面平面ABFE.正方形ABFE的边长为2,在矩形ABCD中,(1)证明:;(2)求点B到平面ACF的距离22.如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=CD=1,BC=2,PD=(Ⅰ)求证:PD⊥平面PBC;(Ⅱ)求直线AB与平面PBC所成角的大小;(Ⅲ)求二面角P-AB-C的正切值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】根据余弦函数的性质计算可得;【详解】因为,所以函数的最小正周期;故选:A2、B【解析】根据存在零点定理,看所给区间的端点值是否异号,,,,所以,那么函数的零点必在区间考点:函数的零点3、B【解析】分别求出m,a的值,求出函数的单调区间即可【详解】解:由题意得:,解得:,故,将代入函数的解析式得:,解得:,故,令,解得:,故在递增,故选B【点睛】本题考查了幂函数的定义以及对数函数的性质,是一道基础题4、B【解析】先利用特殊点求出函数解析式为,再利用指数函数的性质即可判断出正误【详解】解:图象可知,函数过点,,函数解析式为,浮萍每月的增长率为,故选项A正确,函数是指数函数,是曲线型函数,浮萍每月增加的面积不相等,故选项B错误,当时,,故选项C正确,对于D选项,,,,,又,,故选项D正确,故选:B5、C【解析】解不等式求出集合A中的x的范围,然后求出A的补集,再与集合B求交集即可.【详解】集合,则集合,,故选:C.【点睛】本题考查了集合的基本运算,属于基础题.6、C【解析】根据集合补集和交集运算方法计算即可.【详解】表示整数集Z里面去掉这四个整数后构成的集合,∴.故选:C.7、B【解析】本题考查幂函数与指数函数的单调性考查幂函数,此为定义在上的增函数,所以,则;考查指数函数,此为定义在在上的减函数,所以,所以所以有故正确答案为8、C【解析】集合,根据元素和集合的关系知道故答案为C9、A【解析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【详解】设,则,则,则,故选:10、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B11、A【解析】知切求弦,利用商的关系,即可得解.【详解】,故选:A12、B【解析】函数f(x)=x-则f(-x)=-x+=-f(x),由奇函数的定义即可得出结论.【详解】函数f(x)=x-则f(-x)=-x+=-f(x),所以函数f(x)奇函数,所以图象关于原点对称,故选B.【点睛】本题考查了函数的对称性,根据函数解析式特点得出f(-x)=-f(x)即可得出函数为奇函数,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、2【解析】先求出然后直接写出子集即可.【详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.14、12【解析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,.【点睛】本题主要考查函数的奇偶性,属于基础题型.15、1【解析】由已知条件可得,构造函数,求导后可判断函数在上单调递增,再由,得,从而可求得答案【详解】由题意得,,令,则,所以在上单调递增,因为,所以,所以,故答案为:116、##【解析】依题意利用诱导公式及二倍角公式计算可得;【详解】解:因为,所以.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(I);(II).【解析】(Ⅰ)可求出定义域,从而得出,并可求出集合,从而得出时的集合,然后进行交集的运算即可;(Ⅱ)根据即可得出,从而得出,从而得出实数的取值范围【详解】解:(Ⅰ)要使f(x)有意义,则:;解得-4≤x<5;∴A={x|-4≤x<5};B={x|x≥a+2},a=1时,B={x|x≥3};∴A∩B={x|3≤x<5};(Ⅱ)∵A∪B=B;∴A⊆B;∴a+2≤-4;∴a≤-6;∴实数a的取值范围为(-∞,-6].【点睛】考查函数的定义域的概念及求法,交集的概念及运算,以及子集的概念,属于基础题.18、(1),;(2).【解析】(1)求出集合,直接进行补集和并集运算即可求解;(2)由题意可得:,列出满足的不等关系即可求解.【详解】(1)(2),19、(1)3(2)【解析】(1)利用求得.(2)结合指数函数的单调性求得实数的取值范围.【小问1详解】依题意且,【小问2详解】在R上是增函数且所求的取值范围是20、(1)(2)最小值是3,,【解析】(1)代入a,b,解分式不等式即可;(2)利用“1”的变形及均值不等式求出最小值,根据等号成立的条件求出a,b.【小问1详解】当时,,因为由整理得,解得,所以不等式的解集是【小问2详解】因为,所以,,因为所以,即的最小值是3.当且仅当即时等号成立,又,所以,,21、(1)证明见解析;(2)【解析】(1)连接BE,证明AF⊥平面BEC即可;(2)由等体积即可求点B到平面ACF的距离【小问1详解】连接BE,平面平面,且平面平面,又在矩形中,有,平面,平面,,在正方形中有,且,平面平面,平面,;【小问2详解】设点到平面的距离为,由已知有,,由(1)知:平面,平面,,从而可得:,,在等腰中,底边上的高为:,,由得,,则,即点到平面的距离为22、(Ⅰ)见解析;(Ⅱ)30°;(Ⅲ).【解析】(Ⅰ)证明,则,又PD⊥PB即可证明平面(Ⅱ)过点D作AB的平行线交BC于点F,连结PF,DF与平面所成的角等于AB与平面所成的角,为直线DF和平面所成的角,在中,求解即可(Ⅲ)说明是二面角的平面角,在直角梯形ABCD内可求得,而,在中,求解即可【详解】(Ⅰ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD又因为BC∥AD,所以PD⊥BC,又PD⊥PB,PB与BC相交于点B,所以,PD⊥平面PBC.(Ⅱ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=CF=1又AD⊥DC,故BC⊥DC,ABCD为直角梯形,所以,DF=.

在Rt△DPF中,PD=,DF=,sin∠DFP==所以,直线AB与平面PBC所成角为30°.(Ⅲ)设E是CD的中点,则PE⊥CD,又AD⊥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论