湖南省洞口县第九中学2022年高一上数学期末综合测试试题含解析_第1页
湖南省洞口县第九中学2022年高一上数学期末综合测试试题含解析_第2页
湖南省洞口县第九中学2022年高一上数学期末综合测试试题含解析_第3页
湖南省洞口县第九中学2022年高一上数学期末综合测试试题含解析_第4页
湖南省洞口县第九中学2022年高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义域为R的奇函数,且,当时,,则等于()A.-2 B.2C. D.-2.若角满足,,则角所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限3.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.4.函数的大致图像是()A. B.C. D.5.对空间中两条不相交的直线和,必定存在平面,使得()A. B.C. D.6.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型7.函数的定义域是A. B.C. D.8.已知函数,若函数有三个零点,则实数的取值范围是()A. B.C. D.9.下列函数中,既是偶函数,又在区间上单调递增的函数为A. B.C. D.10.缪天荣,浙江人,著名眼科专家、我国眼视光学的开拓者.上世纪年代,我国使用“国际标准视力表”检测视力,采用“小数记录法”记录视力数据,缪天荣发现其中存在不少缺陷.经过年苦心研究,年,他成功研制出“对数视力表”及“分记录法”.这是一种既符合视力生理又便于统计和计算的视力检测系统,使中国的眼视光学研究站在了世界的巅峰.“分记录法”将视力和视角(单位:)设定为对数关系:.如图,标准对数视力表中最大视标的视角为,则对应的视力为.若小明能看清的某行视标的大小是最大视标的(相应的视角为),取,则其视力用“分记录法”记录()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,,则的取值范围是______.12.已知函数,若函数的最小值与函数的最小值相等,则实数的取值范围是__________13.已知函数是幂函数,且时,单调递减,则的值为___________.14.设平行于轴的直线分别与函数和的图像相交于点,,若在函数的图像上存在点,使得为等边三角形,则点的纵坐标为_________.15.幂函数的图象过点,则___________.16.若,是夹角为的两个单位向量,则,的夹角为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)请在给定的坐标系中画出此函数的图象;(2)写出此函数的定义域及单调区间,并写出值域.18.中国茶文化博大精深,茶水的口感与茶叶类型和茶水的温度有关.经验表明,某种绿茶,用一定温度的水泡制,再等到茶水温度降至某一温度时,可以产生最佳口感.某研究员在泡制茶水的过程中,每隔1min测量一次茶水温度,收集到以下数据:时间/min012345水温/℃85.0079.0073.6068.7464.3660.42设茶水温度从85°C开始,经过tmin后温度为y℃,为了刻画茶水温度随时间变化的规律,现有以下两种函数模型供选择:①;②(1)选出你认为最符合实际的函数模型,说明理由,并参考表格中前3组数据,求出函数模型的解析式;(2)若茶水温度降至55℃时饮用,可以产生最佳口感,根据(1)中的函数模型,刚泡好的茶水大约需要放置多长时间才能达到最佳饮用口感?(参考数据:,)19.已知是同一平面内的三个向量,其中(1)若,且,求的坐标;(2)若,且与的夹角为,求的值20.设函数的定义域为A,集合.(1);(2)若集合是的子集,求实数a的取值范围.21.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据奇函数性质和条件,求得函数的周期为8,再化简即可.【详解】函数是定义域为R的奇函数,则有:又,则则有:可得:故,即的周期为则有:故选:B2、C【解析】根据,,分别确定的范围,综合即得解.【详解】解:由知,是一、三象限角,由知,是三、四象限角或终边在y轴负半轴上,故是第三象限角故选:C3、A【解析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.4、D【解析】由题可得定义域为,排除A,C;又由在上单增,所以选D.5、C【解析】讨论两种情况,利用排除法可得结果.【详解】和是异面直线时,选项A、B不成立,排除A、B;和平行时,选项D不成立,排除D,故选C.【点睛】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题.6、D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.7、B【解析】根据根式、对数及分母有意义的原则,即可求得x的取值范围【详解】要使函数有意义,则需,解得,据此可得:函数的定义域为.故选B.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.本题求解时要注意根号在分母上,所以需要,而不是.8、A【解析】函数有三个零点,转化为函数的图象与直线有三个不同的交点,画出的图象,结合图象求解即可【详解】因为函数有三个零点,所以函数的图象与直线有三个不同的交点,函数的图象如图所示,由图可知,,故选:A9、C【解析】选项A中,函数的定义域为,不合题意,故A不正确;选项B中,函数的定义域为,无奇偶性,故B不正确;选项C中,函数为偶函数,且当x>0时,,为增函数,故C正确;选项D中,函数为偶函数,但在不是增函数,故D不正确选C10、C【解析】将代入,求出的值,即可得解.【详解】将代入函数解析式可得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由已知求得,然后应用诱导公式把求值式化为一个角的一个三角函数形式,结合正弦函数性质求得范围【详解】,,所以,所以,,,,故答案为:12、【解析】由二次函数的知识得,当时有.令,则,.结合二次函数可得要满足题意,只需,解不等式可得所求范围【详解】由已知可得,所以当时,取得最小值,且令,则,要使函数的最小值与函数的最小值相等,只需满足,解得或.所以实数的取值范围是故答案为【点睛】本题考查二次函数最值的问题,求解此类问题时要结合二次函数图象,即抛物线的开口方向和对称轴与区间的关系进行求解,同时注意数形结合在解题中的应用,考查分析问题和解决问题的能力,属于基础题13、【解析】根据幂函数定义求出m的值,根据函数的单调性确定m的值,再利用对数运算即可.【详解】为幂函数,,解得:或当时,在上单调递增,不符合题意,舍去;当时,在上单调递减,符合题意;,故答案为:14、【解析】设直线的方程为,求得点,坐标,得到,取的中点,连接,根据三角形为等边三角形,表示出点坐标,根据点在函数的图象上,得到关于的方程,求出,进而可得点的纵坐标.【详解】设直线的方程为,由,得,所以点,由,得,所以点,从而,如图,取的中点,连接,因为为等边三角形,则,所以,,则点,因为点在函数的图象上,则,解得,所以点的纵坐标为.故答案为:.【点睛】关键点点睛:求解本题的关键在于先由同一参数表示出点坐标,再代入求解;本题中,先设直线,分别求出,坐标,得到等边三角形的边长,由此用表示出点坐标,即可求解.15、【解析】将点的坐标代入解析式可解得结果.【详解】因为幂函数的图象过点,所以,解得.故答案为:16、【解析】由题得,,再利用向量的夹角公式求解即得解.【详解】由题得,所以.所以,的夹角为.故答案为:【点睛】本题主要考查平面向量的模和数量积的计算,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)答案见解析【解析】(1)根据函数解析式,分别作出各段图象即可;(2)由解析式可直接得出函数的定义域,由图观察,即可得到单调区间以及值域【详解】图象如图所示(2)定义域为或或,增区间为,减区间为,,,,值域为18、(1);(2)【解析】(1)根据表中数据可知,随着时间的变化,温度越来越低直至室温,所以选择模型①,再列出三个方程,解出,即可得到函数模型的解析式;(2)令,即可求解得出【小问1详解】由表中数据可知,随着时间的变化,温度越来越低直至室温,就不再下降,所以选择模型①:由前3组数据可得,解得,所以函数模型为【小问2详解】由题意可知,即,所以,所以刚泡好的茶水大约需要放置才能达到最佳饮用口感.19、(1)或(2)【解析】(1)由可设,再由可得答案(2)由数量积的定义可得,代入即可得答案【详解】解:(1)由可设,∵,∴,∴,∴或(2)∵与的夹角为,∴,∴【点睛】本题考查向量的基本运算,属于简单题20、(1);(2).【解析】(1)由函数的定义域、指数函数的性质可得,,再由集合的并集运算即可得解;(2)由集合的交集运算可得,再由集合的关系可得,即可得解.【详解】由可得,所以,,(1)所以;(2)因为,所以,所以,解得,所以实数a的取值范围为.【点睛】本题考查了函数定义域及指数不等式的求解,考查了集合的运算及根据集合间的关系求参数,属于基础题.21、(1)(2)在上单调递减,证明见解析(3)【解析】(1)依题意可得,即可得到方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论