四川省巴市通江2021-2022学年中考联考数学试题含解析及点睛_第1页
四川省巴市通江2021-2022学年中考联考数学试题含解析及点睛_第2页
四川省巴市通江2021-2022学年中考联考数学试题含解析及点睛_第3页
四川省巴市通江2021-2022学年中考联考数学试题含解析及点睛_第4页
四川省巴市通江2021-2022学年中考联考数学试题含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx+b>的解集为()A. B. C. D.2.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.70° B.110° C.130° D.140°3.下列4个数:,,π,()0,其中无理数是()A. B. C.π D.()04.如图,已知垂直于的平分线于点,交于点,,若的面积为1,则的面积是()A. B. C. D.5.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.2﹣2 D.4﹣26.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A.8 B.10 C.21 D.227.如图是一个几何体的三视图,则这个几何体是()A. B. C. D.8.|–|的倒数是()A.–2 B.– C. D.29.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=198010.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×211.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()A. B. C. D.12.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______14.抛物线y=(x﹣2)2﹣3的顶点坐标是____.15.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是_____m.(2).一个多边形的每一个内角都是与它相邻外角的3倍,则多边形是_____边形.16.计算(x4)2的结果等于_____.17.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.18.计算:=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.20.(6分)如图,菱形中,分别是边的中点.求证:.21.(6分)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加▲件,每件商品盈利▲元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?22.(8分)如图,在菱形ABCD中,,点E在对角线BD上.将线段CE绕点C顺时针旋转,得到CF,连接DF.(1)求证:BE=DF;(2)连接AC,若EB=EC,求证:.23.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.(10分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式

粗加工后销售

精加工后销售

每吨获利(元)

1000

2000

已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?25.(10分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.求证:;若的直径长8,,求BE的长.26.(12分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.27.(12分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

根据函数的图象和交点坐标即可求得结果.【详解】解:不等式kx+b>的解集为:-6<x<0或x>2,

故选B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.2、D【解析】∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.3、C【解析】=3,是无限循环小数,π是无限不循环小数,,所以π是无理数,故选C.4、B【解析】

先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面积为1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.5、C【解析】

先判断出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【详解】解:如图,连接PF,QF,PC,QC∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故选C.【点睛】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.6、D【解析】分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.故选D.点睛:考查中位数的定义,看懂条形统计图是解题的关键.7、B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.8、D【解析】

根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.【详解】|−|=,的倒数是2;∴|−|的倒数是2,故选D.【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.9、D【解析】

根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1980,故选D.【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.10、B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.11、C【解析】

根据中位数的定义解答即可.【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.

所以这些运动员跳高成绩的中位数是1.1.

故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.12、C【解析】

根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度【解析】

根据图形的旋转和平移性质即可解题.【详解】解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、【点睛】本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.14、(2,﹣3)【解析】

根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点.解题关键点:熟记求抛物线顶点坐标的公式.15、48【解析】

(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为故可列出方程求解.【详解】(1)∵∠ABC=150°,∴斜面BC的坡角为30°,∴h==4m(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为依题意得解得n=8故为八边形.【点睛】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.16、x1【解析】分析:直接利用幂的乘方运算法则计算得出答案.详解:(x4)2=x4×2=x1.故答案为x1.点睛:本题主要考查了幂的乘方运算,正确掌握运算法则是解题的关键.17、1【解析】

如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.【详解】如图作点D关于BC的对称点D′,连接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值为1,故答案为1.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.18、.【解析】

根据异分母分式加减法法则计算即可.【详解】原式.故答案为:.【点睛】本题考查了分式的加减,关键是掌握分式加减的计算法则.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(﹣1,);(3)P(﹣4,8)或(4,8),【解析】

(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;(3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标.【详解】解:(1)设直线AB解析式为y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:,解得:,∴直线AB的解析式为y=﹣x﹣2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=;(2)连接BQ,则易得PQ∥OB,且PQ=OB,∴四边形PQBO是平行四边形,∴OP=BQ,∴OP+AQ=BQ+AQ≥AB=2,(等号成立的条件是点Q在线段AB上),∵直线AB的解析式为y=﹣x﹣2,∴可设此时点Q的坐标为(t,﹣t﹣2),于是,此时点P的坐标为(t,﹣t),∵点P在抛物线y=x2上,∴﹣t=t2,解得:t=0或t=﹣1,∴当t=0,点P与点O重合,不合题意,应舍去,∴OP+AQ的最小值为2,此时点P的坐标为(﹣1,);(3)P(﹣4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),则tan∠HPO=,又,易得tan∠OBC=,当tan∠HPO=tan∠OBC时,可使得∠QPO=∠OBC,于是,得,解得:m=±4,所以P(﹣4,8)或(4,8).【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.20、证明见解析.【解析】

根据菱形的性质,先证明△ABE≌△ADF,即可得解.【详解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵点E,F分别是BC,CD边的中点,∴BE=BC,DF=CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.21、(1)2x50-x(2)每件商品降价20元,商场日盈利可达2100元.【解析】

(1)2x50-x.(2)解:由题意,得(30+2x)(50-x)=2100解之得x1=15,x2=20.∵该商场为尽快减少库存,降价越多越吸引顾客.∴x=20.答:每件商品降价20元,商场日盈利可达2100元.22、证明见解析【解析】【分析】(1)根据菱形的性质可得BC=DC,,再根据,从而可得,继而得=,由旋转的性质可得=,证明≌,即可证得=;(2)根据菱形的对角线的性质可得,,从而得,由,可得,由(1)可知,可推得,即可得,问题得证.【详解】(1)∵四边形ABCD是菱形,∴,,∵,∴,∴,∵线段由线段绕点顺时针旋转得到,∴,在和中,,∴≌,∴;(2)∵四边形ABCD是菱形,∴,,∴,∵,∴,由(1)可知,,∴,∴,∴.【点睛】本题考查了旋转的性质、菱形的性质、全等三角形的判定与性质等,熟练掌握和应用相关的性质与定理是解题的关键.23、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】

(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.24、(1)应安排4天进行精加工,8天进行粗加工(2)①=②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元【解析】

解:(1)设应安排天进行精加工,天进行粗加工,根据题意得解得答:应安排4天进行精加工,8天进行粗加工.(2)①精加工吨,则粗加工()吨,根据题意得=②要求在不超过10天的时间内将所有蔬菜加工完,解得又在一次函数中,,随的增大而增大,当时,精加工天数为=1,粗加工天数为安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.25、(1)证明见解析;(2).【解析】

先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.【详解】证明:,,,是的切线,,,.平分,,,;解:作于F,如图,

的直径长8,.,,,,在中,设,则,,即,解得,.故答案为(1)证明见解析;(2).【点睛】本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.26、(1)y=200x+74000(10≤x≤30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.【解析】

(1)根据题意和表格中的数据可以得到y关于x的函数关系式;

(2)根据题意可以得到相应的不等式,从而可以解答本题;

(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.【详解】解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论