数学《点直线平面之间的位置关系》教案_第1页
数学《点直线平面之间的位置关系》教案_第2页
数学《点直线平面之间的位置关系》教案_第3页
数学《点直线平面之间的位置关系》教案_第4页
数学《点直线平面之间的位置关系》教案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

点、直线、平面之间的位置关系复习(一)课型:复习课一、教学目标1、知识与技能(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。2、过程与方法利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。3情态与价值学生通过知识的整合、梳理,理会空间点、线面间的位置关系及其互相联系,进一步培养学生的空间想象能力和解决问题能力。二、教学重点、难点重点:各知识点间的网络关系;难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。三、教学设计(一)知识回顾,整体认识1、本章知识回顾(1)空间点、线、面间的位置关系;(2)直线、平面平行的判定及性质;(3)直线、平面垂直的判定及性质。2、本章知识结构框图平面(公理1、公理2、公理3、公理4)平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系空间直线、平面的位置关系平面与平面的位置关系直线与平面的位置关系直线与直线的位置关系平面与平面的位置关系直线与平面的位置关系直线与直线的位置关系 (二)整合知识,发展思维1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。公理1——判定直线是否在平面内的依据;公理2——提供确定平面最基本的依据;公理3——判定两个平面交线位置的依据;公理4——判定空间直线之间平行的依据。2、空间问题解决的重要思想方法:化空间问题为平面问题;3、空间平行、垂直之间的转化与联系:平面与平面平行直线与平面平行直线与直线平行平面与平面平行直线与平面平行直线与直线平行直线与直线垂直直线与直线垂直平面与平面垂直直线与平面垂直平面与平面垂直直线与平面垂直4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。(三)应用举例,深化巩固1、P.73A组第1题2、P.74A组第6、8题(四)、课堂练习:1.选择题(1)如图BC是Rt⊿ABC的斜边,过A作⊿ABC所在平面垂线AP,连PB、PC,过A作AD⊥BC于D,连PD,那么图中直角三角形的个数是 () (A)4个 (B)6个(C)7个 (D)8个(2)直线a与平面斜交,则在平面内与直线a垂直的直线() (A)没有(B)有一条(C)有无数条 (D)内所有直线答案:(1)D(2)C2.填空题(1)边长为a的正六边形ABCDEF在平面内,PA⊥,PA=a,则P到CD的距离为,P到BC的距离为.AA′CO(2)AC是平面的斜线,且AO=a,AO与AA′COOC,AA'⊥于A',∠A'OC=45º,则A到直线OC的距离是,∠AOC的余弦值是.答案:(1);(2)3.在正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1分析:A1C在上底面ABCD的射影AC⊥BD,A1C在右侧面的射影D1C⊥C所以A1C⊥BD,A1C⊥C1D,从而有A1C⊥平面BC课后作业1、阅读本章知识内容,从中体会知识的发展过程,理会问题解决的思想方法;2、B组第2题。课后记:复习(二)课型:复习课一、复习目标: 1.了解直线和平面的位置关系;掌握直线和平面平行的判定定理和性质定理. 2.了解平面和平面的位置关系;掌握平面和平面平行的判定定理和性质定理.3.掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题;4.会用三垂线定理及其逆定理证明线线垂直,并会规范地写出解题过程。二、例题分析: 例1.正方体ABCD—A1B1C1D1 (1)求证:平面A1BD∥平面B1D1C (2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.证明:(1)由B1B∥DD1,得四边形BB1D1D是平行四边形,A1AB1BC1CDA1AB1BC1CD1DGEF 又BD平面B1D1C,B1D1平面B1D1C ∴BD∥平面B1D1C 同理A1D∥平面B1D1C 而A1D∩BD=D, ∴平面A1BD∥平面B1CD. (2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中点G,∴AE∥B1G 从而得B1E∥AG,同理GF∥AD.∴AG∥DF. ∴B1E∥DF.∴DF∥平面EB1D1. ∴平面EB1D1∥平面FBD. 说明要证“面面平面”只要证“线面平面”,要证“线面平行”,只要证“线线平面”,故问题最终转化为证线与线的平行.小结:例2.如图,已知M、N、P、Q分别是空间四边形ABCD的边AB、BC、CD、DA的中点.求证:(1)线段MP和NQ相交且互相平分;(2)AC∥平面MNP,BD∥平面MNP.BADCNQM证明:(1)∵M、N是AB、BC的中点,∴MN∥ACBADCNQM∵P、Q是CD、DA的中点,∴PQ∥CA,PQ=CA.∴MN∥QP,MN=QP,MNPQ是平行四边形.∴□MNPQ的对角线MP、NQ相交且互相平分.(2)由(1),AC∥MN.记平面MNP(即平面MNPQ)为α.显然ACα. 否则,若ACα, 由A∈α,M∈α,得B∈α; 由A∈α,Q∈α,得D∈α,则A、B、C、D∈α, 与已知四边形ABCD是空间四边形矛盾. 又∵MNα,∴AC∥α, 又ACα,∴AC∥α,即AC∥平面MNP. 同理可证BD∥平面MNP. 例3.四面体中,分别为的中点,且, ,求证:平面 证明:取的中点,连结,∵分别为的中点,∴ ,又∴,∴在中, ∴,∴,又,即, ∴平面例2.如图是所在平面外一点,平面,是的中点,是上的点,(1)求证:;(2)当,时,求的长。(1)证明:取的中点,连结,∵是的中点,∴,∵平面,∴平面∴是在平面内的射影,取的中点,连结,∵∴,又,∴ ∴,∴,由三垂线定理得 (2)∵,∴,∴,∵平面.∴,且,∴课后作业:1.在长方体中,经过其对角线的平面分别与棱、相交于两点,则四边形的形状为.(平行四边形)ABCDB12.如图,A,B,C,D四点都在平面,外,它们在内的射影A1,B1,C1,D1是平行四边形的四个顶点,在内的射影A2,B2,C2,DABCDB1 证明:∵A,B,C,D四点在内的射影A2,B2,C2,D2 在一条直线上, ∴A,B,C,D四点共面. 又A,B,C,D四点在内的射影A1,B1,C1,D1是平行四边形的四个顶点, ∴平面ABB1A1∥平面CDD1C ∴AB,CD是平面ABCD与平面ABB1A1,平面CDD1C ∴AB∥CD,同理AD∥BC.∴四边形ABCD是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论