脂质代谢课件002_第1页
脂质代谢课件002_第2页
脂质代谢课件002_第3页
脂质代谢课件002_第4页
脂质代谢课件002_第5页
已阅读5页,还剩173页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章脂类代谢第七章脂类代谢1本章要求

本章主要学习脂类(主要是脂肪)物质在生物体的分解及合成代谢。要求重点掌握脂肪酸在生物体内的氧化分解途径—β-氧化和从头合成途径,了解脂类物质的功能和其他的氧化分解途径。本章要求2目录第一节生物体内的脂类第二节脂肪的分解代谢第三节脂肪的生物合成第四节磷脂和糖脂的代谢(自学)第五节胆固醇的代谢(自学)目录第一节生物体内的脂类3第一节生物体内的脂类第一节生物体内的脂类4脂类(lipid)亦译为脂质或类脂,是一类低溶于水而高溶于非极性溶剂的生物有机分子。其化学本质是脂肪酸和醇所形成的酯类及其衍生物。脂肪酸多为4碳以上的长链一元羧酸醇成分包括甘油、鞘氨醇、高级一元醇和固醇。脂类的元素组成主要是CHO,有些尚含NSP。脂类的基本概念脂类(lipid)亦译为脂质或类脂,是一类低溶于水而高5第八章脂质代谢课件6脂的分类(1)单纯脂——是脂肪酸和醇类所形成的酯,其中典型的为甘油三酯(脂肪)。(2)复合脂——除醇类、脂肪酸外还含有其它物质,如磷酸、含氮化合物、糖基及其衍生物、鞘氨醇及其衍生物等。(3)其它脂——为一类不含有脂肪酸、非皂化的脂,包括萜类和甾类化合物等。脂的分类(1)单纯脂——是脂肪酸和醇类所形成的酯,其中7单纯脂类

1.概念单纯脂类是由脂肪酸和醇形成的酯2.种类(2)蜡(1)酰基甘油酯单纯脂类

1.概念单纯脂类是2.种类(2)蜡8O=—O=—CH2—O—C—R1R2—C—O—C—HCH2—O—C—R3O=R1、R2、R3可以相同,也可以不全相同甚至完全不同,R2多是不饱和的。重要脂类:甘油三酯甘油三酯O=—O=—CH2—O—C—R1R2—C—O—C—HCH29甘油三脂中脂肪酸不饱和的较多时,在室温下呈液态,称为油。反之,则呈固态,称为脂。甘油三脂又称油脂。注意!甘油三脂中脂肪酸不饱和的较多时,在室温下呈液态,称为10蜡主要存在于毛发、皮肤、叶子、果实以及昆虫外骨骼等的表面,但也有分散于细胞中的,如蜂蜡。主要是含14至36个碳原子的饱和或不饱和脂肪酸与含16至30个碳原子的一元醇所形成的脂。蜡主要存在于毛发、皮肤、叶子、果实以及昆虫外骨骼等的表11复合脂类1.概念2.种类复合脂是指除脂肪酸与醇组成的酯外,分子内还含有其它成分的脂类。(1)磷脂(2)糖脂和硫脂复合脂类1.概念2.种类复合脂是指除脂(112复合脂

磷酸甘油脂,又称甘油磷脂,是最具有代表性的复合脂,广泛存在于动物、植物和微生物。磷脂甘油脂是细胞膜结构重要的组分之一,在动物的脑、心、肾、肝、骨髓、卵以及植物的种子和果实中含量较为丰富。最简单的磷酸甘油脂结构如图复合脂磷酸甘油脂,又称甘油磷脂,是最具有代表性13非皂化脂类1.概念2.种类

即异戊二烯脂类,它不含脂肪酸,不能进行皂化(1)甾醇类(固醇)(2)萜类化合物(具有(C5H8)n通式)非皂化脂类1.概念2.种类即异戊14

酯(尤指羧酸酯)在碱的作用下水解生成羧酸盐和醇的反应。

酯(尤指羧酸酯)在碱的作用下水解生成羧酸盐和醇的反应。

15.脂类的生理功能(1)结构组分其中的磷脂是构成细胞生物膜的重要结构物质。现代研究表明,细胞质膜是细胞的界膜,控制着细胞内外所有物质的出入。同时,细胞质膜上各种脂、蛋白质、糖等表面复合物质的存在与细胞的识别、信号转导、种质特异性和组织免疫等有密切关系。因此,生物膜对细胞的生命活动具有特别重要的作用;

.脂类的生理功能(1)结构组分其中的磷脂是构成细16(2)储存能源在高等动物体中,甘油三酯主要积累在皮下组织、肠间膜内等,动物的血液、淋巴液、肝脏、骨髓等中也都储藏一定量的脂肪。植物的甘油三酯多存在于种子和果实中,一些油料作物种子的含油量高达3050%。甘油脂通过氧化可以供给人类及动植物生命过程所需的热能。1g甘油脂在体内氧化可产生39kJ的热量,比碳水化合物和蛋白质在同样条件下的热量约高一倍;

(2)储存能源在高等动物体中,甘油三酯主要积累在皮17(3)许多脂类物质行使着各种重要特殊的生理功能。这些物质包括某些维生素和激素等。例如,萜类化合物中包含着维生素A、维生素D、维生素E和维生素K,它们是调节生理代谢重要的活性物质。还有定位在质膜上磷脂化合物,如磷脂酰肌醇、N-磷脂酰乙醇胺等是调节细胞生长发育、抗逆境反应的脂质信号分子。

(3)许多脂类物质行使着各种重要特殊的生理功能。这些物质包18第二节脂肪的分解代谢第二节脂肪的分解代谢19第八章脂质代谢课件20甘油在甘油激酶的催化下,被磷酸化成3-磷酸甘油,然后氧化脱氢生成磷酸二羟丙酮。甘油的代谢其反应如下:甘油在甘油激酶的催化下,被磷酸化成3-磷酸甘油,然后氧化脱氢21其中第一步反应需要消耗ATP,而第二步反应可生成还原辅酶Ⅰ。磷酸二羟丙酮为磷酸丙糖,是糖酵解途径的中间产物,因此既可以继续氧化,经丙酮酸进入三羧酸循环彻底氧化成CO2和水,又可经糖异生作用合成葡萄糖,乃至合成多糖。其中第一步反应需要消耗ATP,而第二步反应可生成还原辅酶Ⅰ22

脂肪酸的氧化一、脂肪酸的-氧化途径二、脂肪酸的a-氧化途径三.脂肪酸的-氧化途径脂肪酸的氧化一、脂肪酸的-氧化途径二、脂肪酸的a-氧化23-氧化作用的提出是在十九世纪初,FranzKnoop在此方面作出了关键性的贡献。他将末端甲基上连有苯环的脂肪酸饲喂狗,然后检测狗尿中的产物。结果发现,食用含偶数碳的脂肪酸的狗的尿中有苯乙酸的衍生物苯乙尿酸,而食用含奇数碳的脂肪酸的狗的尿中有苯甲酸的衍生物马尿酸。Knoop由此推测无论脂肪酸链的长短,脂肪酸的降解总是每次水解下两个碳原子。-氧化作用的提出是在十九世纪初,Franz24第八章脂质代谢课件25

据此,Knoop提出脂肪酸的氧化发生在-碳原子上,而后Ca与C之间的键发生断裂,从而产生二碳单位,此二碳单位Knoop推测是乙酸。

以后的实验证明Knoop推测的准确性,由此提出了脂肪酸的

-氧化作用。

-氧化作用是指脂肪酸在-碳原子上进行氧化,然后a-碳原子和

-碳原子之间键发生断裂。每进行一次-氧化作用,分解出一个二碳片段,生成较原来少两个碳原子的脂肪酸。据此,Knoop提出脂肪酸的氧化发生在-碳原子上26b-氧化作用的部位:油料作物种子萌发时乙醛酸循环体(glyoxysome,简称乙醛酸体)

线粒体基质matrixb-氧化作用的部位:油料作物种子萌发时乙醛酸循环体(glyo271.脂肪酸-氧化的过程

(1)脂肪酸的活化

(2)脂肪酸的转运

(3)b-氧化1.脂肪酸-氧化的过程(1)脂肪酸的活化(2)28(1)脂肪酸的活化脂肪酸的活化是指脂肪酸的羧基与CoA酯化成脂酰CoA的过程。反应如下:(1)脂肪酸的活化脂肪酸的活化是指脂肪酸的羧基与29脂肪酸的活化需要ATP的参与。每活化1分子脂肪酸,需要1分子ATP转化为AMP,即要消耗2个高能磷酸键。这可以折算成需要2分子ATP水解成ADP。在体内,焦磷酸很快被磷酸酶水解,使得反应不可逆。脂肪酸的活化需要ATP的参与。每活化1分子脂肪酸,需要1分子30(2)肉碱转运

脂肪酸的

-氧化作用通常是在线粒体的基质中进行的,中、短链脂肪酸可直接穿过线粒体内膜,而长链脂肪酸需依靠肉碱(也叫肉毒碱)携带,以脂酰肉碱的形式跨越内膜而进入基质,故称肉碱转运。(2)肉碱转运脂肪酸的-氧化作用通常是在线粒体的31肉毒碱是季胺类化合物,是一种人体必需的营养素,有着重要的生物学功能和临床应用价值。近年来肉毒碱在心脑血管疾病、消化疾病、儿童疾病的预防和治疗,以及血液透析病人的营养支持和运动医学等领域已得到广泛的研究和应用。肉毒碱是季胺类化合物,是一种人体必需的营养素,有着重32酯酰CoA进入线粒体基质示意图

N+(CH3)3CH2HO-CH2COO-肉毒碱酯酰肉毒碱

OR-CN+(CH3)3CH2-O-CH2COO-酯酰肉毒碱CoASH

OR-C-S-CoA

OR-C-OHATPCoASHADP+PPiCoASH肉毒碱

OR-C-S-CoAβ-氧化线粒体内膜内侧外侧载体肉碱脂酰转移酶Ⅰ肉碱脂酰转移酶Ⅱ酯酰CoA进入线粒体基质示意图

N+(CH3)3肉毒碱33其中的肉碱脂酰转移酶Ⅰ和Ⅱ是一组同工酶。前者在线粒体外催化脂酰CoA上的脂酰基转移给肉碱,生成脂酰肉碱;后者则在线粒体内将运入的脂酰肉碱上的脂酰基重新转移至CoA,游离的肉碱被运回内膜外侧循环使用。其中的肉碱脂酰转移酶Ⅰ和Ⅱ是一组同工酶。前者在线粒体外催化脂34(3)β-氧化的历程脂酰CoA进入线粒体后,经历多次b-氧化作用而逐步降解成多个二碳单位——乙酰CoA。每次b-氧化作用包括四个步骤。(3)β-氧化的历程脂酰CoA进入线粒体后,经历多次b-氧35

-氧化过程由四个连续的酶促反应组成:①脱氢;②水化;③再脱氢;④硫解。-氧化过程由四个连续的酶促反应组成:36(1)脱氢脂酰CoA经脂酰CoA脱氢酶催化,在其α和β碳原子上脱氢,生成△2反烯脂酰CoA,该脱氢反应的辅基为FAD。(1)脱氢脂酰CoA经脂酰CoA脱氢酶催化,在其α和β37(2)加水(水合反应)△2反烯脂酰CoA在△2反烯脂酰CoA水合酶催化下,在双键上加水生成L-β-羟脂酰CoA。(2)加水(水合反应)△2反烯脂酰CoA在△2反烯脂酰38(3)脱氢L-β-羟脂酰CoA在L-β-羟脂酰CoA脱氢酶催化下,脱去β碳原子与羟基上的氢原子生成β-酮脂酰CoA,该反应的辅酶为NAD+。(3)脱氢L-β-羟脂酰CoA在L-β-羟脂酰CoA脱39(4)硫解在β-酮脂酰CoA硫解酶催化下,β-酮脂酰CoA与CoA作用,硫解产生1分子乙酰CoA和比原来少两个碳原子的脂酰CoA。(4)硫解在β-酮脂酰CoA硫解酶催化下,β-酮脂酰C40第八章脂质代谢课件41对于长链脂肪酸,需要经过多次β-氧化作用,每次降解下一个二碳单位,直至成为二碳(当脂肪酸含偶数碳时)或三碳(当脂肪酸含奇数碳时)的脂酰CoA。对于长链脂肪酸,需要经过多次β-氧化作用,每次降解下一个二碳42下图是软脂酸(棕榈酸C15H31COOH)的b-氧化过程,它需经历七轮b-氧化作用而生成8分子乙酰CoA。2.偶数碳饱和脂肪酸的氧化下图是软脂酸(棕榈酸C15H31COOH)的b-氧化过程,43对于偶数碳饱和脂肪酸,β-氧化过程的化学计量:脂肪酸在β-氧化作用前的活化作用需消耗能量,即1分子ATP转变成了AMP,消耗了2个高能磷酸键,相当于2分子ATP。在β-氧化过程中,每进行一轮,使1分子FAD还原成FADH2、1分子NAD+还原成NADH,两者经呼吸链可分别生成1.5分子和2.5分子ATP,因此每轮β-氧化作用可生成4分子ATP。β-氧化作用的产物乙酰CoA可通过三羧酸循环而彻底氧化成CO2和水,同时每分子乙酰CoA可生成10分子ATP。对于偶数碳饱和脂肪酸,β-氧化过程的化学计量:44在油料种子萌发时乙醛酸体中通过b-氧化产生的乙酰CoA一般不用作产能形成ATP,而是通过乙醛酸循环(见后)转变成琥珀酸,再经糖的异生作用转化成糖。1分子软脂酸彻底氧化生成ATP的分子数一次活化作用-27轮b-氧化作用+4×7=+288分子乙酰CoA的氧化+10×8=+80总计+1062.偶数碳饱和脂肪酸的氧化在油料种子萌发时乙醛酸体中通过b-氧化产生的乙酰CoA一般不45大多数脂肪酸含偶数碳原子,它们通过b-氧化可全部转变成乙酰CoA,但一些植物和海洋生物能合成奇数碳脂肪酸,它们在最后一轮b-氧化作用后,产生丙酰CoA。3.奇数碳链脂肪酸的氧化丙酰CoA的代谢在动物体内依照如下图所示的途径进行,先进行羧化,然后经过两次异构化,形成琥珀酰CoA。从而进入三羧酸循环。大多数脂肪酸含偶数碳原子,它们通过b-氧化可全部转变成乙酰C46油酰CoA的氧化油酰CoA的氧化47脂肪酸在一些酶的催化下,在a-碳原子上发生氧化作用,分解出一个一碳单位CO2,生成缩短了一个碳原子的脂肪酸。这种氧化作用称为脂肪酸的a-氧化作用。二.脂肪酸的a-氧化途径a-氧化作用是1956年由P.K.Stumpf首先在植物种子和叶片中发现的,后来在动物脑和肝细胞中也发现了脂肪酸的这种氧化作用。脂肪酸在一些酶的催化下,在a-碳原子上发生氧化作用,分解出一48该途径以游离脂肪酸作为底物,在a-碳原子上发生羟化(-OH)或氢过氧化(-OOH),然后进一步氧化脱羧,其可能的机理下图所示。该途径以游离脂肪酸作为底物,在a-碳原子上发生羟化(-OH)49a-氧化作用对于生物体内

奇数碳脂肪酸的形成;含甲基的支链脂肪酸的降解;过长的脂肪酸(如C22、C24)的降解起着重要的作用哺乳动物将绿色蔬菜中植醇降解就是通过这种途径而实现的a-氧化作用对于生物体内50脂肪酸降解的主要产物乙酰CoA的去路?脂肪酸降解的主要产物乙酰CoA的去路?51有不少的细菌、藻类或处于一定生长阶段的高等植物(如正在萌发的油料种子),脂肪酸降解的主要产物乙酰CoA还可以通过另外一条途径——乙醛酸循环(glyoxylatecycle),将2分子乙酰CoA合成1分子四碳化合物琥珀酸。1乙醛酸循环有不少的细菌、藻类或处于一定生长阶段的高等植物(如正在萌发的52乙醛酸循环从草酰乙酸和乙酰-CoA开始,形成柠檬酸后,异构化成异柠檬酸。与三羧酸循环不同的是异柠檬酸不经脱羧,而是被异柠檬酸裂解酶裂解成琥珀酸及乙醛酸。乙醛酸与另一个乙酰-CoA缩合形成苹果酸,此反应由苹果酸合酶催化,最后同三羧酸循环一样,苹果酸氧化成草酰乙酸,进入下一次循环。乙醛酸循环从草酰乙酸和乙酰-CoA开始,形成柠檬酸后,异构53CoASH柠檬酸合成酶顺乌头酸酶乙醛酸循环反应历程NAD+NADH苹果酸脱氢酶草酰乙酸

OCH3-C~SCoACoASH

OCH3-C~SCoACOO-CH2CH2COO-琥珀酸异柠檬酸裂解酶苹果酸合成酶

O

OH-C-C~OH乙醛酸CoASH柠檬酸合成酶顺乌头酸酶乙醛酸循环反应历程NAD+54乙醛酸循环的净结果是把两分子乙酰CoA转变成一分子琥珀酸。其总反应为:乙醛酸循环的净结果是把两分子乙酰CoA转变成一分子琥珀酸。其55乙醛酸循环与三羧酸循环相比,可以看成是三羧酸循环的一个支路,它在异柠檬酸处分支,绕过了三羧酸循环的两步脱羧反应,因而不发生氧化降解。参与乙醛酸循环的酶除了异柠檬酸裂解酶和苹果酸合酶外,其余的酶都与三羧酸循环的酶相同。异柠檬酸裂解酶和苹果酸合酶是乙醛酸循环的关键酶。乙醛酸循环与三羧酸循环相比,可以看成是三羧酸循环的一个支路,56乙醛酸循环的生物学意义乙醛酸循环不存在于动物及高等植物的营养器官内,它存在于一些细菌、藻类和油料植物种子的乙醛酸体中。油料植物的种子中主要的贮藏物质是脂肪,在种子萌发时乙醛酸体大量出现,由于它含有脂肪分解和乙醛酸循环的整套酶系,因此可以将脂肪分解,并将分解产物乙酰CoA转变为琥珀酸。乙醛酸循环的生物学意义乙醛酸循环不存在于动物及高等植物的营57由乙醛酸循环转变成的琥珀酸,需要在线粒体中通过三羧酸循环的部分反应转化为苹果酸,然后进入细胞质,沿糖异生途径转变成糖类。乙醛酸循环中有苹果酸中间体,它也可以到细胞质中异生成糖,但它需要及时回补,以保证循环的正常进行,这仍来自循环的产物琥珀酸在线粒体中的转变。

由乙醛酸循环转变成的琥珀酸,需要在线粒体中通过三羧酸循环的部58琥珀酸可异生成糖并以蔗糖的形式运至种苗的其它组织供给它们生长所需的能源和碳源;而当种子萌发终止、贮脂耗尽,同时叶片能进行光合作用时,植物的能源和碳源可以由太阳光和CO2获得时,乙醛酸体的数量迅速下降以至完全消失。对于一些细菌和藻类,乙醛酸循环使它们能以乙酸盐为能源和碳源生长。琥珀酸可异生成糖并以蔗糖的形式运至种苗的其它组织供给它们生长59第三节脂肪的生物合成第三节脂肪的生物合成60一.甘油的合成由糖酵解的中间产物磷酸二羟丙酮还原而成。甘油的合成在细胞质中进行。

事实上,在甘油和脂肪酸缩合连结成脂肪时,所需要的是3-磷酸甘油,而不是游离的甘油。一.甘油的合成由糖酵解的中间产物磷酸二羟丙酮还原而成。61二.脂肪酸的合成

饱和脂肪酸的从头合成脂肪酸碳链的延长不饱和键的形成二.脂肪酸的合成饱和脂肪酸的从头合成62(一)脂肪酸的从头合成原料:乙酰CoA

产物:不超过16碳的饱和脂肪酸部位:动物体——细胞质植物体——叶绿体和前质体

(一)脂肪酸的从头合成原料:乙酰CoA

产物:不超过16碳631.脂肪酸从头合成的过程(1)乙酰CoA的来源和转运乙酰CoA在线粒体产生,来自丙酮酸氧化脱羧及氨基酸的氧化。乙酰CoA不能直接穿过线粒体内膜,需要通过“柠檬酸穿梭”的方式从线粒体基质到达细胞质,才能用于合成脂肪酸。1.脂肪酸从头合成的过程(1)乙酰CoA的来源和转运64线粒体基质内膜胞液HSCoA柠檬酸草酰乙酸柠檬酸合酶H2O+乙酰CoAHSCoA+ATP柠檬酸裂解酶草酰乙酸乙酰CoA+ADP+Pi丙酮酸NADH+H+苹果酸脱氢酶苹果酸NAD+ADP+Pi丙酮酸羧化酶

ATP+CO2柠檬酸苹果酸酶NADP+NADPH+H++CO2丙酮酸苹果酸NAD+NADH+H+苹果酸脱氢酶

1.乙酰CoA转运出线粒体:线粒体基质内65(2)丙二酸单酰CoA的形成

在脂肪酸的从头合成过程中,参入脂肪酸链的二碳单位的直接提供者并不是乙酰CoA,而是乙酰CoA的羧化产物——丙二酸单酰CoA(malonyl-CoA)。(2)丙二酸单酰CoA的形成在脂肪酸的从头合成过程66乙酰CoA羧化酶的组成在原核生物中,由三个不同亚基组成三元多酶复合体—

生物素羧基载体蛋白(BCCP)

生物素羧化酶

羧基转移酶在动物及高等植物体内,乙酰CoA羧化酶是由多个亚基组成的寡聚酶,每个亚基兼具上述的三种催化活性,但只有当它们聚合成完整的寡聚酶后才有活性。

乙酰CoA羧化酶的组成在原核生物中,由三个不同亚基组67大多数植物质体的乙酰CoA羧化酶由BCCP、BC、α-CT和β-CT4个亚基组成,细胞溶胶中的乙酰CoA羧化酶为多功能亚基的二聚体;禾本科植物质体和细胞溶胶中的乙酰CoA羧化酶都是多功能亚基的二聚体。大多数植物质体的乙酰CoA羧化酶由BCCP、BC、α-CT和68乙酰CoA的羧化为不可逆反应,是脂肪酸合成的限速步骤,故乙酰CoA羧化酶的活性高低控制着脂肪酸合成的速度。

影响乙酰CoA羧化酶活性的因素:(在动物体中)

柠檬酸:促进无活性的单体聚合成有活性的全酶,从而加速脂肪酸的合成;

软脂酰CoA:促使全酶的解体,因而抑制脂肪酸的合成。乙酰CoA的羧化为不可逆反应,是脂肪酸合成的限速步骤,69(3)脂肪酸合酶系统(fattyacidsynthasesystem,FAS)FAS的组成①乙酰CoA-ACP转移酶②丙二酸单酰CoA-ACP转移酶③-酮脂酰-ACP合酶④-酮脂酰-ACP还原酶⑤-羟脂酰-ACP脱水酶⑥烯脂酰-ACP还原酶⑦ACP——脂酰基载体蛋白(3)脂肪酸合酶系统(fattyacidsynth70脂肪酸合酶①②③④⑤⑥中央SH外围巯基SH⑥①②③④⑤ACP①乙酰CoA:ACP转移酶②丙二酸单酰CoA:ACP转移酶③β-酮脂酰-ACP合酶④β-酮脂酰-ACP还原酶

⑤β-羟脂酰-ACP脱水酶⑥烯脂酰-ACP还原酶

脂肪酸合酶①②③④⑤⑥中央SH外围巯基SH⑥①②③④⑤ACP71ACP:不同生物体中的ACP十分相似:大肠杆菌中的ACP是一个由77个氨基酸残基组成的热稳定蛋白质,在它的第36位丝氨酸残基的侧链上,连有辅基4'-磷酸泛酰巯基乙胺。ACP:不同生物体中的ACP十分相似:大肠杆菌中的ACP是一72ACP辅基犹如一个转动的手臂,以其末端的巯基携带着脂酰基依次转到各酶的活性中心,从而发生各种反应,如下图所示。ACP辅基犹如一个转动的手臂,以其末端的巯基携带着脂73FAS上的活性巯基:(用于运载脂酰基)中央巯基—ACP上的巯基;外围巯基—b-酮脂酰-ACP合酶上的巯基,由该酶的一个Cys残基提供。FAS上的活性巯基:(用于运载脂酰基)74软脂酸合成的反应流程CH3CO-SHOOCCH2CO-SCH3CHCH2CO-S(β羟脂酰基)SHOHSHSHCH3CH=CHCO-S(烯丁酰基)SHSHSH

OCH3C-S||SHNADP+NADPH⑥HSCoA乙酰S~CoA

①丙二单酰-SCoACoASH②NADP+NADPH④H2O⑤③CO2软脂酸H2O进位链的延伸水解

OCH3C-S||SHCH3COCH2CO-S(β酮丁酰基)SHCH3CH2CH2CO-SSH①乙酰CoA:ACP转移酶②丙二酸单酰CoA:ACP转移酶③β-酮脂酰-ACP合酶④β-酮脂酰-ACP还原酶

⑤β-羟脂酰-ACP脱水酶⑥烯脂酰-ACP还原酶

软脂酸合成的反应流程CH3CO-SHOOCCH2CO-SCH75这样由乙酰CoA作为二碳受体.丙二酸单酰ACP作为二碳供体,经过缩合、还原、脱水、再还原几个反应步骤,即生成含4个碳原子的丁酰ACP。如果丁酰ACP再与丙二酸单酰ACP反应,经过上述重复的反应步骤,即可得到己酰ACP。如此不断地进行循环,最终得到软脂酰ACP。最后在硫脂酶的作用下,ACP上的脂酰基或被转移到CoA上,或形成游离脂肪酸,或者直接用于合成磷脂酸。整个脂肪酸从头合成过程可简示如下:这样由乙酰CoA作为二碳受体.丙二酸单酰ACP作为76总反应式8CH3-C~SCOA=O+7ATP+14NADPH++14H+CH3(

CH2)14COOH+14NADP+

+8CoASH+

7ADP

+7Pi+6H2O从头合成与β氧化过程的区别(P230)总反应式8CH3-C~SCOA=O+7ATP+14NADPH771.延长发生的部位内质网动物体线粒体植物体叶绿体或前质体(二)脂肪酸碳链的延长1.延长发生的部位内质网动物体线粒体植物体叶绿体或前质体(二782.延长过程该过程是以脂酰CoA(不是脂肪酸)作为起点(引物),通过与从头合成相似的步骤,即缩合→还原→脱水→再还原,逐步在羧基端增加二碳单位。

至于延长的具体方式,在细胞的不同部位都不相同。2.延长过程该过程是以脂酰CoA(不是脂肪酸)作为起点(引79线粒体中的延长过程:相当于脂肪酸b-氧化过程的逆转,只是第二次还原反应由还原酶而不是脱氢酶催化,电子载体为NADPH而不是FADH2;内质网上的延长过程:与从头合成过程相似,只是脂酰基的载体为CoA而不是ACP。1)动物体中脂肪酸链的延长线粒体中的延长过程:相当于脂肪酸b-氧化过程的逆转,只是第二80植物的脂肪酸延长系统有两个——叶绿体或前质体中的只负责将软脂酸转变为硬脂酸(18:0),这一过程类似于从头合成途径;碳链的进一步延长则由内质网上的延长系统完成。(2)植物体中脂肪酸链的延长植物的脂肪酸延长系统有两个——(2)植物体中脂肪酸链的延长81在生物体内存在大量的各种不饱和脂肪酸,如棕榈油酸(16:1D9)、油酸(18:1D9)、亚油酸(18:2D9,12)、亚麻酸(18:3D9,12,15)等,它们都是由饱和脂肪酸经去饱和作用而形成的。去饱和作用有需氧和厌氧两条途径,前者主要存在于真核生物中,后者存在于厌氧微生物中。(三)脂肪酸碳链的去饱和在生物体内存在大量的各种不饱和脂肪酸,如棕榈油酸(16:1D821.需氧途径该途径由去饱和酶系催化,需要O2和NADPH的共同参与。去饱和酶系由去饱和酶(desaturase)及一系列的电子传递体组成。在该途径中,一分子氧接受来自去饱和酶的两对电子而生成两分子水,其中一对电子是通过电子传递体从NADPH获得,另一对则是从脂酰基获得,结果NADPH被氧化成NADP+,脂酰基被氧化形成双键。(参见下图)1.需氧途径该途径由去饱和酶系催化,需要O2和NADPH的83去饱和作用一般首先发生在饱和脂肪酸的9、10位碳原子上,生成单不饱和脂肪酸(如棕榈油酸、油酸)。接下来,对于动物,尤其是哺乳动物,从该双键向脂肪酸的羧基端继续去饱和形成多不饱和脂肪酸。去饱和作用一般首先发生在饱和脂肪酸的9、10位碳原子上,生成84而植物则是从该双键向脂肪酸的甲基端继续去饱和生成如亚油酸、亚麻酸等的多烯脂肪酸。此外,植物也可以不通过这条需氧途径,而是在内质网膜上由单不饱和脂肪酸以磷脂或甘油糖脂的形式继续去饱和的,它也是一个需氧的过程。1.需氧途径而植物则是从该双键向脂肪酸的甲基端继续去饱和生成如亚油酸、亚85由于动物不能合成亚油酸和亚麻酸,但对维持其生长十分重要,所以必须从食物中获得,这些脂肪酸对人类和哺乳动物是必需脂肪酸。但动物能通过去饱和作用和延长脂肪酸碳链的过程将它们转变为二十碳四烯酸。1.需氧途径由于动物不能合成亚油酸和亚麻酸,但对维持其生长十分重要,所以86厌氧途径是厌氧微生物合成单不饱和脂肪酸的方式。当FAS系统从头合成到10个碳的羟脂酰-ACP(b-羟癸酰-ACP)时,接下来的脱水作用不是由b-羟脂酰-ACP脱水酶催化发生在a、b位之间,而是由另一专一性的b-羟癸酰-ACP脱水酶催化发生在b、g位之间,生成b、g-烯癸酰-ACP,然后不再进行烯脂酰-ACP的还原反应,而是继续参入二碳单位,进行从头合成的反应过程。2.厌氧途径厌氧途径是厌氧微生物合成单不饱和脂肪酸的方式。2.厌氧途径87厌氧途径只能生成单不饱和脂肪酸,因此厌氧微生物中不存在多不饱和脂肪酸。厌氧途径只能生成单不饱和脂肪酸,因此厌氧微生物中不存在多不饱88原料:磷酸甘油、脂酰CoA(3分子)三.三酰甘油的生物合成原料:磷酸甘油、脂酰CoA(3分子)三.三酰甘油的生物89第七章脂类代谢第七章脂类代谢90本章要求

本章主要学习脂类(主要是脂肪)物质在生物体的分解及合成代谢。要求重点掌握脂肪酸在生物体内的氧化分解途径—β-氧化和从头合成途径,了解脂类物质的功能和其他的氧化分解途径。本章要求91目录第一节生物体内的脂类第二节脂肪的分解代谢第三节脂肪的生物合成第四节磷脂和糖脂的代谢(自学)第五节胆固醇的代谢(自学)目录第一节生物体内的脂类92第一节生物体内的脂类第一节生物体内的脂类93脂类(lipid)亦译为脂质或类脂,是一类低溶于水而高溶于非极性溶剂的生物有机分子。其化学本质是脂肪酸和醇所形成的酯类及其衍生物。脂肪酸多为4碳以上的长链一元羧酸醇成分包括甘油、鞘氨醇、高级一元醇和固醇。脂类的元素组成主要是CHO,有些尚含NSP。脂类的基本概念脂类(lipid)亦译为脂质或类脂,是一类低溶于水而高94第八章脂质代谢课件95脂的分类(1)单纯脂——是脂肪酸和醇类所形成的酯,其中典型的为甘油三酯(脂肪)。(2)复合脂——除醇类、脂肪酸外还含有其它物质,如磷酸、含氮化合物、糖基及其衍生物、鞘氨醇及其衍生物等。(3)其它脂——为一类不含有脂肪酸、非皂化的脂,包括萜类和甾类化合物等。脂的分类(1)单纯脂——是脂肪酸和醇类所形成的酯,其中96单纯脂类

1.概念单纯脂类是由脂肪酸和醇形成的酯2.种类(2)蜡(1)酰基甘油酯单纯脂类

1.概念单纯脂类是2.种类(2)蜡97O=—O=—CH2—O—C—R1R2—C—O—C—HCH2—O—C—R3O=R1、R2、R3可以相同,也可以不全相同甚至完全不同,R2多是不饱和的。重要脂类:甘油三酯甘油三酯O=—O=—CH2—O—C—R1R2—C—O—C—HCH298甘油三脂中脂肪酸不饱和的较多时,在室温下呈液态,称为油。反之,则呈固态,称为脂。甘油三脂又称油脂。注意!甘油三脂中脂肪酸不饱和的较多时,在室温下呈液态,称为99蜡主要存在于毛发、皮肤、叶子、果实以及昆虫外骨骼等的表面,但也有分散于细胞中的,如蜂蜡。主要是含14至36个碳原子的饱和或不饱和脂肪酸与含16至30个碳原子的一元醇所形成的脂。蜡主要存在于毛发、皮肤、叶子、果实以及昆虫外骨骼等的表100复合脂类1.概念2.种类复合脂是指除脂肪酸与醇组成的酯外,分子内还含有其它成分的脂类。(1)磷脂(2)糖脂和硫脂复合脂类1.概念2.种类复合脂是指除脂(1101复合脂

磷酸甘油脂,又称甘油磷脂,是最具有代表性的复合脂,广泛存在于动物、植物和微生物。磷脂甘油脂是细胞膜结构重要的组分之一,在动物的脑、心、肾、肝、骨髓、卵以及植物的种子和果实中含量较为丰富。最简单的磷酸甘油脂结构如图复合脂磷酸甘油脂,又称甘油磷脂,是最具有代表性102非皂化脂类1.概念2.种类

即异戊二烯脂类,它不含脂肪酸,不能进行皂化(1)甾醇类(固醇)(2)萜类化合物(具有(C5H8)n通式)非皂化脂类1.概念2.种类即异戊103

酯(尤指羧酸酯)在碱的作用下水解生成羧酸盐和醇的反应。

酯(尤指羧酸酯)在碱的作用下水解生成羧酸盐和醇的反应。

104.脂类的生理功能(1)结构组分其中的磷脂是构成细胞生物膜的重要结构物质。现代研究表明,细胞质膜是细胞的界膜,控制着细胞内外所有物质的出入。同时,细胞质膜上各种脂、蛋白质、糖等表面复合物质的存在与细胞的识别、信号转导、种质特异性和组织免疫等有密切关系。因此,生物膜对细胞的生命活动具有特别重要的作用;

.脂类的生理功能(1)结构组分其中的磷脂是构成细105(2)储存能源在高等动物体中,甘油三酯主要积累在皮下组织、肠间膜内等,动物的血液、淋巴液、肝脏、骨髓等中也都储藏一定量的脂肪。植物的甘油三酯多存在于种子和果实中,一些油料作物种子的含油量高达3050%。甘油脂通过氧化可以供给人类及动植物生命过程所需的热能。1g甘油脂在体内氧化可产生39kJ的热量,比碳水化合物和蛋白质在同样条件下的热量约高一倍;

(2)储存能源在高等动物体中,甘油三酯主要积累在皮106(3)许多脂类物质行使着各种重要特殊的生理功能。这些物质包括某些维生素和激素等。例如,萜类化合物中包含着维生素A、维生素D、维生素E和维生素K,它们是调节生理代谢重要的活性物质。还有定位在质膜上磷脂化合物,如磷脂酰肌醇、N-磷脂酰乙醇胺等是调节细胞生长发育、抗逆境反应的脂质信号分子。

(3)许多脂类物质行使着各种重要特殊的生理功能。这些物质包107第二节脂肪的分解代谢第二节脂肪的分解代谢108第八章脂质代谢课件109甘油在甘油激酶的催化下,被磷酸化成3-磷酸甘油,然后氧化脱氢生成磷酸二羟丙酮。甘油的代谢其反应如下:甘油在甘油激酶的催化下,被磷酸化成3-磷酸甘油,然后氧化脱氢110其中第一步反应需要消耗ATP,而第二步反应可生成还原辅酶Ⅰ。磷酸二羟丙酮为磷酸丙糖,是糖酵解途径的中间产物,因此既可以继续氧化,经丙酮酸进入三羧酸循环彻底氧化成CO2和水,又可经糖异生作用合成葡萄糖,乃至合成多糖。其中第一步反应需要消耗ATP,而第二步反应可生成还原辅酶Ⅰ111

脂肪酸的氧化一、脂肪酸的-氧化途径二、脂肪酸的a-氧化途径三.脂肪酸的-氧化途径脂肪酸的氧化一、脂肪酸的-氧化途径二、脂肪酸的a-氧化112-氧化作用的提出是在十九世纪初,FranzKnoop在此方面作出了关键性的贡献。他将末端甲基上连有苯环的脂肪酸饲喂狗,然后检测狗尿中的产物。结果发现,食用含偶数碳的脂肪酸的狗的尿中有苯乙酸的衍生物苯乙尿酸,而食用含奇数碳的脂肪酸的狗的尿中有苯甲酸的衍生物马尿酸。Knoop由此推测无论脂肪酸链的长短,脂肪酸的降解总是每次水解下两个碳原子。-氧化作用的提出是在十九世纪初,Franz113第八章脂质代谢课件114

据此,Knoop提出脂肪酸的氧化发生在-碳原子上,而后Ca与C之间的键发生断裂,从而产生二碳单位,此二碳单位Knoop推测是乙酸。

以后的实验证明Knoop推测的准确性,由此提出了脂肪酸的

-氧化作用。

-氧化作用是指脂肪酸在-碳原子上进行氧化,然后a-碳原子和

-碳原子之间键发生断裂。每进行一次-氧化作用,分解出一个二碳片段,生成较原来少两个碳原子的脂肪酸。据此,Knoop提出脂肪酸的氧化发生在-碳原子上115b-氧化作用的部位:油料作物种子萌发时乙醛酸循环体(glyoxysome,简称乙醛酸体)

线粒体基质matrixb-氧化作用的部位:油料作物种子萌发时乙醛酸循环体(glyo1161.脂肪酸-氧化的过程

(1)脂肪酸的活化

(2)脂肪酸的转运

(3)b-氧化1.脂肪酸-氧化的过程(1)脂肪酸的活化(2)117(1)脂肪酸的活化脂肪酸的活化是指脂肪酸的羧基与CoA酯化成脂酰CoA的过程。反应如下:(1)脂肪酸的活化脂肪酸的活化是指脂肪酸的羧基与118脂肪酸的活化需要ATP的参与。每活化1分子脂肪酸,需要1分子ATP转化为AMP,即要消耗2个高能磷酸键。这可以折算成需要2分子ATP水解成ADP。在体内,焦磷酸很快被磷酸酶水解,使得反应不可逆。脂肪酸的活化需要ATP的参与。每活化1分子脂肪酸,需要1分子119(2)肉碱转运

脂肪酸的

-氧化作用通常是在线粒体的基质中进行的,中、短链脂肪酸可直接穿过线粒体内膜,而长链脂肪酸需依靠肉碱(也叫肉毒碱)携带,以脂酰肉碱的形式跨越内膜而进入基质,故称肉碱转运。(2)肉碱转运脂肪酸的-氧化作用通常是在线粒体的120肉毒碱是季胺类化合物,是一种人体必需的营养素,有着重要的生物学功能和临床应用价值。近年来肉毒碱在心脑血管疾病、消化疾病、儿童疾病的预防和治疗,以及血液透析病人的营养支持和运动医学等领域已得到广泛的研究和应用。肉毒碱是季胺类化合物,是一种人体必需的营养素,有着重121酯酰CoA进入线粒体基质示意图

N+(CH3)3CH2HO-CH2COO-肉毒碱酯酰肉毒碱

OR-CN+(CH3)3CH2-O-CH2COO-酯酰肉毒碱CoASH

OR-C-S-CoA

OR-C-OHATPCoASHADP+PPiCoASH肉毒碱

OR-C-S-CoAβ-氧化线粒体内膜内侧外侧载体肉碱脂酰转移酶Ⅰ肉碱脂酰转移酶Ⅱ酯酰CoA进入线粒体基质示意图

N+(CH3)3肉毒碱122其中的肉碱脂酰转移酶Ⅰ和Ⅱ是一组同工酶。前者在线粒体外催化脂酰CoA上的脂酰基转移给肉碱,生成脂酰肉碱;后者则在线粒体内将运入的脂酰肉碱上的脂酰基重新转移至CoA,游离的肉碱被运回内膜外侧循环使用。其中的肉碱脂酰转移酶Ⅰ和Ⅱ是一组同工酶。前者在线粒体外催化脂123(3)β-氧化的历程脂酰CoA进入线粒体后,经历多次b-氧化作用而逐步降解成多个二碳单位——乙酰CoA。每次b-氧化作用包括四个步骤。(3)β-氧化的历程脂酰CoA进入线粒体后,经历多次b-氧124

-氧化过程由四个连续的酶促反应组成:①脱氢;②水化;③再脱氢;④硫解。-氧化过程由四个连续的酶促反应组成:125(1)脱氢脂酰CoA经脂酰CoA脱氢酶催化,在其α和β碳原子上脱氢,生成△2反烯脂酰CoA,该脱氢反应的辅基为FAD。(1)脱氢脂酰CoA经脂酰CoA脱氢酶催化,在其α和β126(2)加水(水合反应)△2反烯脂酰CoA在△2反烯脂酰CoA水合酶催化下,在双键上加水生成L-β-羟脂酰CoA。(2)加水(水合反应)△2反烯脂酰CoA在△2反烯脂酰127(3)脱氢L-β-羟脂酰CoA在L-β-羟脂酰CoA脱氢酶催化下,脱去β碳原子与羟基上的氢原子生成β-酮脂酰CoA,该反应的辅酶为NAD+。(3)脱氢L-β-羟脂酰CoA在L-β-羟脂酰CoA脱128(4)硫解在β-酮脂酰CoA硫解酶催化下,β-酮脂酰CoA与CoA作用,硫解产生1分子乙酰CoA和比原来少两个碳原子的脂酰CoA。(4)硫解在β-酮脂酰CoA硫解酶催化下,β-酮脂酰C129第八章脂质代谢课件130对于长链脂肪酸,需要经过多次β-氧化作用,每次降解下一个二碳单位,直至成为二碳(当脂肪酸含偶数碳时)或三碳(当脂肪酸含奇数碳时)的脂酰CoA。对于长链脂肪酸,需要经过多次β-氧化作用,每次降解下一个二碳131下图是软脂酸(棕榈酸C15H31COOH)的b-氧化过程,它需经历七轮b-氧化作用而生成8分子乙酰CoA。2.偶数碳饱和脂肪酸的氧化下图是软脂酸(棕榈酸C15H31COOH)的b-氧化过程,132对于偶数碳饱和脂肪酸,β-氧化过程的化学计量:脂肪酸在β-氧化作用前的活化作用需消耗能量,即1分子ATP转变成了AMP,消耗了2个高能磷酸键,相当于2分子ATP。在β-氧化过程中,每进行一轮,使1分子FAD还原成FADH2、1分子NAD+还原成NADH,两者经呼吸链可分别生成1.5分子和2.5分子ATP,因此每轮β-氧化作用可生成4分子ATP。β-氧化作用的产物乙酰CoA可通过三羧酸循环而彻底氧化成CO2和水,同时每分子乙酰CoA可生成10分子ATP。对于偶数碳饱和脂肪酸,β-氧化过程的化学计量:133在油料种子萌发时乙醛酸体中通过b-氧化产生的乙酰CoA一般不用作产能形成ATP,而是通过乙醛酸循环(见后)转变成琥珀酸,再经糖的异生作用转化成糖。1分子软脂酸彻底氧化生成ATP的分子数一次活化作用-27轮b-氧化作用+4×7=+288分子乙酰CoA的氧化+10×8=+80总计+1062.偶数碳饱和脂肪酸的氧化在油料种子萌发时乙醛酸体中通过b-氧化产生的乙酰CoA一般不134大多数脂肪酸含偶数碳原子,它们通过b-氧化可全部转变成乙酰CoA,但一些植物和海洋生物能合成奇数碳脂肪酸,它们在最后一轮b-氧化作用后,产生丙酰CoA。3.奇数碳链脂肪酸的氧化丙酰CoA的代谢在动物体内依照如下图所示的途径进行,先进行羧化,然后经过两次异构化,形成琥珀酰CoA。从而进入三羧酸循环。大多数脂肪酸含偶数碳原子,它们通过b-氧化可全部转变成乙酰C135油酰CoA的氧化油酰CoA的氧化136脂肪酸在一些酶的催化下,在a-碳原子上发生氧化作用,分解出一个一碳单位CO2,生成缩短了一个碳原子的脂肪酸。这种氧化作用称为脂肪酸的a-氧化作用。二.脂肪酸的a-氧化途径a-氧化作用是1956年由P.K.Stumpf首先在植物种子和叶片中发现的,后来在动物脑和肝细胞中也发现了脂肪酸的这种氧化作用。脂肪酸在一些酶的催化下,在a-碳原子上发生氧化作用,分解出一137该途径以游离脂肪酸作为底物,在a-碳原子上发生羟化(-OH)或氢过氧化(-OOH),然后进一步氧化脱羧,其可能的机理下图所示。该途径以游离脂肪酸作为底物,在a-碳原子上发生羟化(-OH)138a-氧化作用对于生物体内

奇数碳脂肪酸的形成;含甲基的支链脂肪酸的降解;过长的脂肪酸(如C22、C24)的降解起着重要的作用哺乳动物将绿色蔬菜中植醇降解就是通过这种途径而实现的a-氧化作用对于生物体内139脂肪酸降解的主要产物乙酰CoA的去路?脂肪酸降解的主要产物乙酰CoA的去路?140有不少的细菌、藻类或处于一定生长阶段的高等植物(如正在萌发的油料种子),脂肪酸降解的主要产物乙酰CoA还可以通过另外一条途径——乙醛酸循环(glyoxylatecycle),将2分子乙酰CoA合成1分子四碳化合物琥珀酸。1乙醛酸循环有不少的细菌、藻类或处于一定生长阶段的高等植物(如正在萌发的141乙醛酸循环从草酰乙酸和乙酰-CoA开始,形成柠檬酸后,异构化成异柠檬酸。与三羧酸循环不同的是异柠檬酸不经脱羧,而是被异柠檬酸裂解酶裂解成琥珀酸及乙醛酸。乙醛酸与另一个乙酰-CoA缩合形成苹果酸,此反应由苹果酸合酶催化,最后同三羧酸循环一样,苹果酸氧化成草酰乙酸,进入下一次循环。乙醛酸循环从草酰乙酸和乙酰-CoA开始,形成柠檬酸后,异构142CoASH柠檬酸合成酶顺乌头酸酶乙醛酸循环反应历程NAD+NADH苹果酸脱氢酶草酰乙酸

OCH3-C~SCoACoASH

OCH3-C~SCoACOO-CH2CH2COO-琥珀酸异柠檬酸裂解酶苹果酸合成酶

O

OH-C-C~OH乙醛酸CoASH柠檬酸合成酶顺乌头酸酶乙醛酸循环反应历程NAD+143乙醛酸循环的净结果是把两分子乙酰CoA转变成一分子琥珀酸。其总反应为:乙醛酸循环的净结果是把两分子乙酰CoA转变成一分子琥珀酸。其144乙醛酸循环与三羧酸循环相比,可以看成是三羧酸循环的一个支路,它在异柠檬酸处分支,绕过了三羧酸循环的两步脱羧反应,因而不发生氧化降解。参与乙醛酸循环的酶除了异柠檬酸裂解酶和苹果酸合酶外,其余的酶都与三羧酸循环的酶相同。异柠檬酸裂解酶和苹果酸合酶是乙醛酸循环的关键酶。乙醛酸循环与三羧酸循环相比,可以看成是三羧酸循环的一个支路,145乙醛酸循环的生物学意义乙醛酸循环不存在于动物及高等植物的营养器官内,它存在于一些细菌、藻类和油料植物种子的乙醛酸体中。油料植物的种子中主要的贮藏物质是脂肪,在种子萌发时乙醛酸体大量出现,由于它含有脂肪分解和乙醛酸循环的整套酶系,因此可以将脂肪分解,并将分解产物乙酰CoA转变为琥珀酸。乙醛酸循环的生物学意义乙醛酸循环不存在于动物及高等植物的营146由乙醛酸循环转变成的琥珀酸,需要在线粒体中通过三羧酸循环的部分反应转化为苹果酸,然后进入细胞质,沿糖异生途径转变成糖类。乙醛酸循环中有苹果酸中间体,它也可以到细胞质中异生成糖,但它需要及时回补,以保证循环的正常进行,这仍来自循环的产物琥珀酸在线粒体中的转变。

由乙醛酸循环转变成的琥珀酸,需要在线粒体中通过三羧酸循环的部147琥珀酸可异生成糖并以蔗糖的形式运至种苗的其它组织供给它们生长所需的能源和碳源;而当种子萌发终止、贮脂耗尽,同时叶片能进行光合作用时,植物的能源和碳源可以由太阳光和CO2获得时,乙醛酸体的数量迅速下降以至完全消失。对于一些细菌和藻类,乙醛酸循环使它们能以乙酸盐为能源和碳源生长。琥珀酸可异生成糖并以蔗糖的形式运至种苗的其它组织供给它们生长148第三节脂肪的生物合成第三节脂肪的生物合成149一.甘油的合成由糖酵解的中间产物磷酸二羟丙酮还原而成。甘油的合成在细胞质中进行。

事实上,在甘油和脂肪酸缩合连结成脂肪时,所需要的是3-磷酸甘油,而不是游离的甘油。一.甘油的合成由糖酵解的中间产物磷酸二羟丙酮还原而成。150二.脂肪酸的合成

饱和脂肪酸的从头合成脂肪酸碳链的延长不饱和键的形成二.脂肪酸的合成饱和脂肪酸的从头合成151(一)脂肪酸的从头合成原料:乙酰CoA

产物:不超过16碳的饱和脂肪酸部位:动物体——细胞质植物体——叶绿体和前质体

(一)脂肪酸的从头合成原料:乙酰CoA

产物:不超过16碳1521.脂肪酸从头合成的过程(1)乙酰CoA的来源和转运乙酰CoA在线粒体产生,来自丙酮酸氧化脱羧及氨基酸的氧化。乙酰CoA不能直接穿过线粒体内膜,需要通过“柠檬酸穿梭”的方式从线粒体基质到达细胞质,才能用于合成脂肪酸。1.脂肪酸从头合成的过程(1)乙酰CoA的来源和转运153线粒体基质内膜胞液HSCoA柠檬酸草酰乙酸柠檬酸合酶H2O+乙酰CoAHSCoA+ATP柠檬酸裂解酶草酰乙酸乙酰CoA+ADP+Pi丙酮酸NADH+H+苹果酸脱氢酶苹果酸NAD+ADP+Pi丙酮酸羧化酶

ATP+CO2柠檬酸苹果酸酶NADP+NADPH+H++CO2丙酮酸苹果酸NAD+NADH+H+苹果酸脱氢酶

1.乙酰CoA转运出线粒体:线粒体基质内154(2)丙二酸单酰CoA的形成

在脂肪酸的从头合成过程中,参入脂肪酸链的二碳单位的直接提供者并不是乙酰CoA,而是乙酰CoA的羧化产物——丙二酸单酰CoA(malonyl-CoA)。(2)丙二酸单酰CoA的形成在脂肪酸的从头合成过程155乙酰CoA羧化酶的组成在原核生物中,由三个不同亚基组成三元多酶复合体—

生物素羧基载体蛋白(BCCP)

生物素羧化酶

羧基转移酶在动物及高等植物体内,乙酰CoA羧化酶是由多个亚基组成的寡聚酶,每个亚基兼具上述的三种催化活性,但只有当它们聚合成完整的寡聚酶后才有活性。

乙酰CoA羧化酶的组成在原核生物中,由三个不同亚基组156大多数植物质体的乙酰CoA羧化酶由BCCP、BC、α-CT和β-CT4个亚基组成,细胞溶胶中的乙酰CoA羧化酶为多功能亚基的二聚体;禾本科植物质体和细胞溶胶中的乙酰CoA羧化酶都是多功能亚基的二聚体。大多数植物质体的乙酰CoA羧化酶由BCCP、BC、α-CT和157乙酰CoA的羧化为不可逆反应,是脂肪酸合成的限速步骤,故乙酰CoA羧化酶的活性高低控制着脂肪酸合成的速度。

影响乙酰CoA羧化酶活性的因素:(在动物体中)

柠檬酸:促进无活性的单体聚合成有活性的全酶,从而加速脂肪酸的合成;

软脂酰CoA:促使全酶的解体,因而抑制脂肪酸的合成。乙酰CoA的羧化为不可逆反应,是脂肪酸合成的限速步骤,158(3)脂肪酸合酶系统(fattyacidsynthasesystem,FAS)FAS的组成①乙酰CoA-ACP转移酶②丙二酸单酰CoA-ACP转移酶③-酮脂酰-ACP合酶④-酮脂酰-ACP还原酶⑤-羟脂酰-ACP脱水酶⑥烯脂酰-ACP还原酶⑦ACP——脂酰基载体蛋白(3)脂肪酸合酶系统(fattyacidsynth159脂肪酸合酶①②③④⑤⑥中央SH外围巯基SH⑥①②③④⑤ACP①乙酰CoA:ACP转移酶②丙二酸单酰CoA:ACP转移酶③β-酮脂酰-ACP合酶④β-酮脂酰-ACP还原酶

⑤β-羟脂酰-ACP脱水酶⑥烯脂酰-ACP还原酶

脂肪酸合酶①②③④⑤⑥中央SH外围巯基SH⑥①②③④⑤ACP160ACP:不同生物体中的ACP十分相似:大肠杆菌中的ACP是一个由77个氨基酸残基组成的热稳定蛋白质,在它的第36位丝氨酸残基的侧链上,连有辅基4'-磷酸泛酰巯基乙胺。ACP:不同生物体中的ACP十分相似:大肠杆菌中的ACP是一161ACP辅基犹如一个转动的手臂,以其末端的巯基携带着脂酰基依次转到各酶的活性中心,从而发生各种反应,如下图所示。ACP辅基犹如一个转动的手臂,以其末端的巯基携带着脂162FAS上的活性巯基:(用于运载脂酰基)中央巯基—ACP上的巯基;外围巯基—b-酮脂酰-ACP合酶上的巯基,由该酶的一个Cys残基提供。FAS上的活性巯基:(用于运载脂酰基)163软脂酸合成的反应流程CH3CO-SHOOCCH2CO-SCH3CHCH2CO-S(β羟脂酰基)SHOHSHSHCH3CH=CHCO-S(烯丁酰基)SHSHSH

OCH3C-S||SHNADP+NADPH⑥HSCoA乙酰S~CoA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论