《平行四边形面积》教学设计及意图_第1页
《平行四边形面积》教学设计及意图_第2页
《平行四边形面积》教学设计及意图_第3页
《平行四边形面积》教学设计及意图_第4页
《平行四边形面积》教学设计及意图_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《平行四边形面积》教学设计及意图教学内容:义务教育课程标准实验教科书五年级上册第79-81页《平行四边形的面积》。教学目标:1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。3、运用猜测—验证的方法,使学生获得积极的情感体验。发展学生自主探索、合作交流的能力,感受数学知识的价值。教学重点:探索并掌握平行四边形的面积计算方法。教学难点:理解平行四边形面积计算公式的推导过程。教具准备:一个长方形、3个平行四边形,PPT课件一套。学具准备:初步探究学习卡、深入探究学习卡,平行四边形、剪刀、三角板。教学过程:一、故事引入,激起质疑1、师:今天老师给大家带来了一个故事,想听吗?用行动告诉老师你想听。一天,阿凡提在街上卖毛毯,地主巴依走了过来。他一眼就看中了阿凡提的花毛毯。聪明的阿凡提拿出这样的两块毛毯,分别是什么形状?(课件)(生:分别是长方形和平行四边形。)阿凡提说:“亲爱的巴依老爷,如果您能从这两块毛毯中挑出一块大的来,我就不收你的钱;可如果你选错的话,你就得答应我,把欠长工的钱全部付清,怎么样?”巴依一听不收钱,高兴的两眼放光。他一把抓起这块长方形的毛毯说:“这块大,我就要这块!”2、巴依认为这块长方形的毛毯大,你猜猜看哪块大?(生1:我认为平行四边形的毛毯大。生2:我认为两块毛毯面积一样大。)我们说的毛毯的大小指的是毛毯的什么?(生:毛毯的面积。)以前我们学过哪些图形的面积,计算公式是什么?(生:以前我们学过长方形和正方形的面积。长方形的面积=长×宽,正方形的面积=边长×边长)3、这节课我们继续研究面积:平行四边形的面积。(板书课题)[设计意图:“亚里士多德”说过:思维是从疑问和惊奇开始的。我以故事引入,产生疑问,从而激发学生极大的学习、探索热情。]二、动手操作,探究方法(一)利用方格,初步探究1、以前用数方格的方法得到了长方形和正方形的面积,用数方格的方法能得到平行四边形的面积吗?一起看“初步探究学习卡”,大声读出要求。读懂要求后把表格填完整。帮助学生解读括号里句子的含义:这是我们以前数方格用的方格纸,上面有很多小正方形。小正方形的边长是(1厘米),而正方形的面积公式等于(边长乘以边长),所以一小格正方形的面积就是1平方厘米。不满1格的按半个计算,那么就是说2个半个合起来就是1平方厘米。2、同桌交流一下填法。3、汇报想法。谁愿意说说你的填法?(生:平行四边形的底是6厘米,高是4厘米,面积是24平方厘米;长方形的长是6厘米,宽是4厘米,面积是24平方厘米。)这位同学是横着汇报的,谁能竖着汇报?(生:平行四边形的底是6厘米,长方形的长是6厘米;平行四边形的高是4厘米,长方形的宽是4厘米;平行四边形的面积是24平方厘米,长方形的面积是24平方厘米。)4、观察表格你发现了什么?(生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。)5、小结:(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间真有某种联系呢?通过下面的学习你一定会明白。数方格的方法可以得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸呢?那么,能不能找到一种方法,适用于计算所有平行四边形的面积呢?我们试试看![设计意图:这个环节用数方格的方法得到图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了它们之间的联系,为下面的探究作了很好的铺垫。](二)动手操作,深入探究1、介绍材料请每组拿出准备的3个平行四边形,我们就利用剪刀、三角板等学具,完成下面的深入探究活动。寻找平行四边形面积的计算方法。2、深入探究1)探究前思考:思想决定行动,动手操作前建议大家先想一想:怎样才能得到这个平行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?静静地想,想好了吗?2)探究活动步骤:想好了,我们来看“深入探究活动”,分三步进行:第一步:动手操作。为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。第二步:结合剪拼过程,思考这三个问题:大声读出来!第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。明白了吗?比比看,哪个小组进行的又快又好!开始吧!3、学生活动,教师参与。请同学上来展示,并在黑板前交流剪拼方法和对三个问题的思考。4、汇报交流1)汇报剪拼过程。我们先请这位同学和大家交流一下他的剪拼方法。请你一边演示,一边说说你的剪拼过程。指导规范叙述:(生1:我把平行四边形沿高剪下一个直角三角形,向右平移,能拼成一个长方形。)(生2:我把平行四边形沿高剪下一个直角梯形,向右平移,也能拼成一个长方形。)接下来的这种方法,学生有可能想不到,但作为一个学习的参与者,我也给大家提供了一种剪拼的方法:“林老师有一种方法和大家的都不一样,仔细看:我把平行四边形沿中线对折,沿高的一半在两边各剪下一个小三角形,再旋转平移,也能拼成一个长方形。”(板书:沿高剪平移)并追问:为什么要沿高剪?(生:只有沿高剪,才能把平行四边形变成长方形。)2)汇报深入探究的三个问题。结合剪拼过程,谁来说说你对这三个问题的思考?(生:①通过剪一剪,拼一拼,我们把平行四边形变成了长方形。②剪拼后的长方形与原来的平行四边形相比,面积不变。③剪拼后的长方形的长和原来平行四边形的底相等,长方形的宽和原来平行四边形的高相等。)追问:你怎么知道平行四边形的面积和剪拼后的长方形面积相等?请每位同学选一种你喜欢的剪拼方法,像刚才同学一样,说说你对这3个问题的思考。(同时,师板书:平行四边形的面积底高长方形的面积长宽)[设计意图:此环节留给学生充分探索、交流的空间,使学生在剪、拼等一系列实验活动中理解和掌握平行四边形和转化后的长方形之间的联系,从而为后面平行四边形面积公式的总结奠定基础。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。】(三)指导点拨,总结方法刚才大家在剪拼的时候,都把平行四边形变成了长方形,把新问题变成已有的知识来解答。大家知道吗?我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。(板书:转化)通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。相信大家在今后的学习中会不断运用这种方法,尝到它给你带来的喜悦。【设计意图:思想是数学的灵魂,方法是数学的行为。学生通过思考、操作、探究、交流后,不但经历了知识的形成过程,发展了思维能力,更重要的是学生领悟到了“转化”这一研究数学的思想和方法,这才是学生最大的收获。】(四)小结提炼,推导公式1、刚才我们通过剪拼,把平行四边形转化成了长方形。我们发现:(生齐说:转化后的长方形和原来的平行四边形面积相等。长方形的长和原来平行四边形的底相等,长方形的宽和平行四边形的高相等。)你能不能根据长方形的面积公式,总结出平行四边形的面积公式?2、谁说说看?(生:平行四边形的面积等于底乘高。)为什么呢?(生:因为长方形的面积等于长乘宽。)(同时师补充完整板书。)哎!我们找到平行四边形的面积计算公式了!我们成功了!自信、骄傲地把我们的重大发现读出来吧!3、如果用字母S表示平行四边形的面积,用a来表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积用字母表示公式是?(生:S=ah)反问:那要计算平行四边形的面积,必须知道什么?(平行四边形的底和高)4、小结:孩子们,看,我们多了不起!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!三、解决问题,拓展延伸1、(课件:)公园里有两个平行四边形花坛,它们的面积各是多少?温馨提示:计算面积时,要先写字母公式,再计算噢!独立审题后解答,指名读:温馨提示。(生:S=ah=6×4=24m2S=ah=14×8=112m2)小结:要求平行四边形的面积,只要用它的底乘高就行了。2、你能算出芸芸家这块菜地的面积吗?题上给了这么多信息,应该怎么选择呢?试试看,你一定行!指名板书计算过程。(生1板书:S=ah=30×10=300m2)(生2板书:S=ah=20×15=300m2)请板书的同学给大家讲解方法。小结:看来,计算平行四边形的面积必须是一组相对应的底和高相乘才行啊!3、接下来大家要加油噢!看,向你挑战!怕不怕?下面几个平行四边形,它们的面积一样大吗?(生:我认为这几个平行四边形的面一样大。因为这几个平行四边形的底相等,高也相当,所以面积就相等。)小结:判断平行四边形的面积,只要抓住哪两个关键点就行了?(只要抓住它的底和高就行了。)[设计意图:数学规律的形成与深化,不仅靠感知,还要辅以灵活、有层次的课堂训练.我设计了以上由易到难,层层深入的三组练习,以期达到对知识的有效掌握。]四、全课小结,完善新知现

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论