




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——等差数列导学案交流第1页共3页等差数列导学案学习目标:
1、理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件;2、引导学生理解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式.重点:等差数列的概念,等差数列的概念,用公式解决一些简单的问题。
难点:等差数列的通项公式的推导过程及应用自主学习
1、回顾数列的定义以及给出数列和表示数列的几种方法_______________________________2、请同学们细心观测,填空,并看看以下三个数列有什么共同特征?
①0,5,10,15,20,25,___,...
②1682,1758,1834,1910,1986,____,...
③18,15.5,13,10.5,8,5.5,____,...
3、观测相邻两项间的关系,得到:
对于数列①,从第2项起,每一项与前一项的差都等于_____;
对于数列②,从第2项起,每一项与前一项的差都等于_____;
对于数列③,从第2项起,每一项与前一项的差都等于______;
通过以上填空请总结有何规律:___________________________________尝试给等差数列一个概念:_________________________________________
常数叫做等差数列的_____,寻常用字母______表示,练习判断下面的数列是否为等差数列,是等差数列的找出公差
1,2,3,4,
5,6
0.9,0.7,0.5,0.3,0.1
0,0,0,
0,0,
0
1,
3,
5,
6,
8,
10
1,3,6,
9,
12
当d0时,数列为____数列(填递增、递减)
当d0时,数列为____数列((填递增、递减);当d=0时,数列为常数列。
第2页共3页4、
若一等差数列na的首项是1a,公差是d,则据其定义可得:
21aa
,即:21aa
32aa
,即:321aada
43aa
,即:431aada
由此归纳等差数列的通项公式可得:na
已知一数列为等差数列,则只要知其首项1a和公差d,便可求得其通项na.
这种推导方法叫
还有其它的推导方法吗?(师生共同完成)这种推导方法又叫什么呢?
由等差数列通项公式可得:
dmaam)1(1
即:
错误!!未找到引用源。
则:
nadna)1(1=dmnadndmamm)()1()1(
即等差数列的其次通项公式:
nadmnam)(
d=nmaanm例题剖析
例1(1)求等差数列8,5,2,的第20项
(2)-401是不是等差数列-5,-9,-13的项?假如是,是第几项?
例2
在等差数列{{ann}}中,已知a55=10,a12=31,求首项a11与公差d.
第3页共3页课堂练习1.(1)求等差数列3,7,11,的第4项与第10项.
(2)100是不是等差数列2,9,16,的项?假如是,是第几项?假如不是,请说明理由.那么50是这个数列中的项吗?
2.已知等差数列{an}中,a4=10,a7=19,求a1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冰糖葫芦课件
- 2025届辽宁省阜新市阜蒙县育才高级中学物理高二下期末经典模拟试题含解析
- 冬季流行性疾病防治
- 冬奥知识图文课件
- 客房清洁说课课件
- 二零二五年度办公楼绿色环保装修工程合同
- 二零二五年保密技术研发与应用合同
- 2025版运动场馆彩绘墙体素材采购合同
- 二零二五版场项目投标失利后风险管控优化合同
- 2025版FIDIC标准电力设施土建施工合同
- T-CMBA 024-2024 生物安全二级实验室运行管理通.用要求
- 血液标本采集(静脉采血)
- 2025年特种设备安全管理人员A证全国考试题库(含答案)
- 老旧住宅小区综合整治装饰装修工程施工方案
- 基于单元主题的小学英语跨学科学习活动的实践与研究
- 实验室生物安全手册
- (正式版)JBT 14449-2024 起重机械焊接工艺评定
- 商务礼仪之座次及用餐
- SEO谷歌推广方案
- 注塑标准成型条件表电子表格模板
- 企业数字化管理
评论
0/150
提交评论