![自动控制理论甲-第五周课件英文_第1页](http://file4.renrendoc.com/view/13e4c9933a4cdaa6d044428506e39a75/13e4c9933a4cdaa6d044428506e39a751.gif)
![自动控制理论甲-第五周课件英文_第2页](http://file4.renrendoc.com/view/13e4c9933a4cdaa6d044428506e39a75/13e4c9933a4cdaa6d044428506e39a752.gif)
![自动控制理论甲-第五周课件英文_第3页](http://file4.renrendoc.com/view/13e4c9933a4cdaa6d044428506e39a75/13e4c9933a4cdaa6d044428506e39a753.gif)
![自动控制理论甲-第五周课件英文_第4页](http://file4.renrendoc.com/view/13e4c9933a4cdaa6d044428506e39a75/13e4c9933a4cdaa6d044428506e39a754.gif)
![自动控制理论甲-第五周课件英文_第5页](http://file4.renrendoc.com/view/13e4c9933a4cdaa6d044428506e39a75/13e4c9933a4cdaa6d044428506e39a755.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Principle
of
Automatic
ControlSystem
Representation(Ch.5)浙江大学控制科学与工程学系IntroductionDetermination
of
the
overalltransferfunctionSimulation
diagramsSignal
flow
graphFrom
transfer
function
to
state
spacemodel21Simulation
diagramsSimulation
diagrams(State
variable
diagram)Phase
variablesSimulationdiagramsSimulation
diagrams
(see
P144.
5.6)Simulation
used
to
represent
the
dynamic
equations
of
asystem
may
show
the
actual
physical
variables
that
appear
inthe
system,
or
it
may
show
variables
that
are
used
purely
formathematical
convenience..The
simulation
diagram
is
similar
to
the
block
diagramused
to
represent
the
system
on
an
og
computer.The
basic
elements
used
in
simulation
diagram
are
idealintegrators,
ideal
amplifiers,
and
ideal
summers,
shown
inFig.5.16.Multipliers
and
dividers
may
be
used
for
nonlinearsystems425x2
x1dt1s2
1sX
(
s
)
1
X
(
s
)Integratorx1X1(s)Figure
5.16
Elements
used
in
simulation
diagram21x
x
dtIntegratorx1Amplifier
or
gainx1x2
Kx1Kx4
x1
x2
x3x2x3+-Summerx1
+LTSimulationdiagramsSimulation
diagrams
(seeP144.5.6)Basic
elements:
ideal
integrators,ideal
amplifiers,and
idealsummers.6LC
c
RC
c
vc(t)
edt
2
dt
dv
2
(t)
dv
(t)LCy
RCy
y
ueFig2.2yyyabub+Fig.5.17
b
R
L1L
C
Where:a
b
Let
y=vc(t),
u=ey
bu
ay
bySimulationdiagramsSimulation
diagrams
(see
P144.5.6)3SimulationdiagramsSimulation
diagrams
(seeP144.5.6)One
of
the
methods
used
to
obtain
a
simulationdiagramincludes
the
following
steps:Step
1:
Start
with
thedifferential
equationStep
2:
Rearrange
the
differential
equation
(by
order
ofderivative)Step
3:
Start
the
diagram
by
assuming
the
signal
placed
onthe
leftside
of
the
equation,is
available.
Note
the
number
ofintegratorsare
needed
to
determine
at
.Step
4:
Complete
the
diagram
by
feeding
back
the
appropriateoutputs
of
the
integrators
to
a
summer,
in
order
to
generate
theoriginal
signal
of
step
2.
Include
the
input
function
if
it
isrequired.78Step
1
&
2
:
When
y=vc
,
u=e
are
used,
rearrange
the
Eq.(2.12)
to
the
formy
bu
ay
byWhere:a
R
L1L
C
b
LCy
RCy
y
ueFig
2.2SimulationdiagramsSimulation
diagrams
(see
P144.5.6)Example.
Draw
the
simulation
diagram
for
the
RLC
circuit
ofFig.2.2.LC
c
RC
c
v
c
(
t
)
edt
2
dtdv
2
(
t
)
dv
(
t
)49Step
4
:
Completing
thesimulation
diagram
as
shown
in
Fig.
5.17byyyabub+Fig.5.17bWhere:a
R
L1L
C
b
SimulationdiagramsSimulation
diagrams
(see
P144.5.6)y
bu
ay
byStep
3
:
The
signal
y
is
integrated
twice,
as
shown
in
Fig.
5.17abelow.
bab+yu
yyy
x2y
x1y
x2
x15SimulationdiagramsSimulation
diagrams
(see
P144.
5.6)The
simulation
diagram
is
as
shown
in
Fig.5.17b.The
state
variables
are
selected
as
the
outputs
of
the
eachintegrator
in
the
simulation
diagram,
as
shown
in
the
Fig.So,
the
simulation
diagram
can
express
the
relations
of
statevariables,
which
is
called
state
variable
diagram.1011y
bu
ay
byubab+y
b
a
2
x
b
x1
0 1
x
0uy
x1y
x2y
x1y
x2
x1Simulation
diagramState
variable
diagramWhere:a
R
LL
C
1b
state
variable
diagramstate
space
model12y
x2y
x12
1y
x
xub-
a-
b+yub
ab+y
x22
1y
x
xy
x1
yFor
the
convenience,
two
forms
diagram
are
used.Where:a
R
L1L
C
b
L
LC
R
x
1
u1
0
0
2
LCx
1
x1y
x1Simulation
diagramSimulationdiagramsState
variable
diagram613State-space
Model∫∫x1=y-5-1x2u42SimulationdiagramsState
variable
diagram14Review:
state
space
modelL
R
L L
C
x
1
u
0
1
x
2
1
x
1
0y
x1andich
is
cUp
to
now,
tworepresentationsfor
expressingthe
systemstate
are
known:physical
and
phase.LCy
RCy
y
ueFig2.2
R
x
1
u1
0
0
2
LC L
LC
x
1
x1y
x1Note:same
RLC
circuit
of
Fig.2.5.(P31),
if
state
variables
are
selected
asx
1
v
c
,
wh
x
2
ialled
physical-variable
method
based
upon
theenergy-storage
elements
of
the
system,
the
state
space
model
isSo,
same
systemmay
berepresented
by
differentstatespace
model.The
difference
illustrates
thatstate
variables
are
not
unique.7Teral
block
diagram
representing
the
state
space
model
is
shownas
following.state
space
model)x(t)
Ax
(t)
Bu
(t
)y
(t
)
Cx
(t
DuState
equationOutput
equationFeedforwardmatrixSimulationdiagramsSimulation
diagrams
(see
P144.5.6)Different
sets
of
state
variables
may
be
selected
to
represent
asystem.The
selection
ofthe
state
variables
determines
the
A,
B,
C,
and
Dmatrices
of15SimulationdiagramsPhase
variables
(see
P146.
5.6)When
the
state
variables
are
the
dependent
variableand
the
derivatives
of
the
dependent
variable,
theyare
called
phase
variables.The
phase
variables
are
applicable
to
differentialequations
of
any
order
and
can
be
used
withoutdrawing
the
simulation
diagram.There
are
two
cases
required
to
consider
as
following.16817When
these
state
variables
are
usedTeral
differential
equation
that
contains
no
derivatives
of
input
isy
(
n
)
(
t
)
a
n
1
y
(
n
1)
(
t
)
a
0
y
(
t
)
uThe
state
variables
are
selected
as
the
phase
variables,
which
are.
Thus,defined
by
x1
y
(
t
)
,
x
2
x1
y(t)
,x3
x2
y(t)
,xn
xn1
y
(
n
1)
(
t)y
(
n
)
(
t
)
xn(
D
n
an
1
Dn
1
a
1
D
a
0
)
x
1
uSimulationdiagramsPhase
variables:
Case
1
(no
derivatives
in
the
input)xn
a
n
1
x
n
a
n
2
xn
1
a
1
x
2
a
0
x1
u(5.37)x
A
c
x
bcuy
cxStandard
forms:Note:subscripty
x1
1
0
0
0x1
x
0
x
0
2
x1
0
a
0
n
1
an
1
x
n
n
1
[
u
]
a1
an
2
xn
x
x2
x1
are:Companion
matrix友矩阵,能控标准形(Ac
,bc)xn
a
n
1
x
n
a
n
2
xn
1
a
1
x
2
a
0
x1
u(5.37)x
wx
w
101000010000118SimulationdiagramsPhase
variables:
Case
1
(no
derivatives
in
the
input)The
resulting
state
and
output
equations
using
phase
variables919
(c
w
Dw(
D
n
a0w
1n
11
c
w
1
D
c
D
c
)u1
0D
n
1
a
D
a
)
yY
(
s
)
cs
w
csw
1
c
s
c
w w
1
1
0U
(
s
)s
n
asn
1
a
s
an
1
1
0ux1ywc
s
w
c
s
w1
c
s
cw1
1
01s
n
a
s
n
1
a
s
an
1
1
0串联分解Phase
variables:
Case
2
(there
are
derivatives
in
the
input)P147(5.40-5.43)的解释20x
Ac
x
bc
uStandard
forms:Where
Ac
and
bc
arethe
same
as
Case
1.The
output
equation
is
different
from
Case
1.
it
depends
ondifferent
values
of
w:
w=n
or
w<n.xw
xw
1SimulationdiagramsPhase
variables:
Case
2
(there
are
derivatives
in
the
input)The
differential
equation
has
the
same
form
as
Case
1,that
is(
D
n
an
1
Dn
1
a
1
D
a
0
)
x
1
uux1ywc
s
w
c
s
w1
c
s
cw1
1
01s
n
a
s
n
1
a
s
an
1
1
0串联分解10xn
u
(
a
n
1
x
n
a
n
2
x
n
1
a
1
x
2
a
0
x
1
)y
c
n
xn
c
n
1
x
n
c
1
x
2
c
0
x1
x
n
a
n
1
x
n
a
n
2
x
n
1
a
1
x
2
a
0
x
1
u
(5.37)(1)
For
w=ny
c
w
xw
c
w
1
x
w
c
1
x
2
c
0
x11 1
ny
(c
a
c
)
(c
a
c
)
(c
a c
)
x
c
un
1
n
1
n
n
0 0
n
cx
du(5.44)21SimulationdiagramsPhase
variables:
Case
2
(there
are
derivatives
in
the
input)22) (c1
)In
this
case,
the
output
y
reducestoy
c0
c1
cw
0
0x
cx
xw
xw
1cw
i
0,
i
1
,
2
,
,
n
wandy
(c0
(
cn
1
an
1
cn
)x
[
c
n
]u1
0w
(c
w
D
cw
1w
1n
1D
c
D
c
)u(2)
For
w<n
(
D
n
aD
n
1
a
D
a
)
y1
0SimulationdiagramsPhase
variables:
Case
2
(there
are
derivatives
in
the
input)11
(c
D
w
cw w
1D
w
1
c
D
c
)u1
0(
D
n
a Dn
1
a
D
a
)
yn
1
1
0Differentialequation11
0
0
n
x
x
0
x1
0
n
0
1n
1
n
2
n
1
a
a2
[
u
]0
0
x
a
a
xState
spaceequations)
(c1
c1
cw
0)
(cn1
an1cn
)
uw=n
y
(c0
w<n
y
c0
0x
cxPhase
variablesxw
xw
1
x1
0100
x
2
0010
SimulationdiagramsSummary:
Phase
variablesThe
simulation
diagram
that
represents
the
system
above
is
shownin
P148Fig.5.18(w<n).23SimulationdiagramsSimulationdiagram2412Advantages:Only
two
summers
requiredDifferentiators
for
u(t)
are
avoided.(noise
accentuation)Fig.
5.18
Simulation
Diagram
for
(5.40)
with
phase
variablesSignal
flow
graphFlow-Graph
definitionsFlow-Graph
AlgebraGeneral
Flow-Graph
ysisThe
Mason
Gain
RuleState
transition
signal
flow
graph26??????Question?For
complexsystems,
the
block
diagram
method
maye
difficult
to
complete.
Ex.
as
Fig.
Below.G(s)
C(s)
G1G2G3G4G5G6
R(s) 1
G1G2G3G4G5G6H1
G2G3
H2
G4G5
H3
G3G4
H4
G2G3H2G4G5
H313Signal-Flow
Graphs
(SFG)
(see
P149
5.7)By
using
the
signal-flow
graph
model,
the
reduction(simplification)
procedure
(used
in
the
block
diagrammethod)
is
not
necessaryto
determine
the
relationshipbetween
system
variables.In
other
words,
with
signal-flow
graphmethod
,
itiseasier
to
deal
with
difficult
block
diagram.What
issignal-flow
graph?27AnSFG
isa
diagram
that
represents
a
set
of
simultaneous
equations.G(s)uySignal-Flow
Graph(SFG)
Definitions(see
P1495.7)信号流图是由节点和支路组成的信号传递网络An
SFG
consists
of
a
graph
in
which
nodes
are
connected
by
directed
branches.The
nodes
represent
each
of
systemvariables.A
branch
connected
between
two
nodes
acts
as
a
one-way
singlemultiplier:
the
direction
is
indicated
by
an
arrow
and
the
multiplicationfactor(transfer
function
or
gain)
is
placed
onthebranch.y
G
(
s
)
u28A:SFG只适用于线性系统,而方块图可以适用于非线性系统Q:Block
Diagram和SFG的适用性?1429xabcduvyww
au
bvx
cw
c(au
bv)y
dw
d(au
bv)Signal-Flow
Graph(SFG)
Definitions(see
P1495.7)A
node
performs
two
functions:Addition
of
the
signalson
all
ing
branchesTransmission
of
the
total
node
signal
(the
sum
of
allingsignals)
to
all
out-going
branchesxabcduvywEx.
In
Fig.
above,
the
path
u-w-x
is
a
forward
path
between
the
nodes
uand
x.30A
path,
is
any
connectedsequence
of
branches
whosearrows
are
in
the
samedirection.A
forward
path
between
2
nodesis
one
that
follows
the
arrowsofsuccessive
branches
and
inwhicha
node
appears
only
once.Source
nodesSink
nodesMixed
nodes(independent
nodes)
:
have
only
outgoing
branches.(dependent
nodes)
:
have
only ingbranches.(general
nodes)Signal-Flow
Graph(SFG)
Definitions(see
P1495.7)There
are
3
types
of
nodes:15Signal-Flow
Graph(SFG)
Definitions输入节点(源点)
只有输出支路的节点称为输入节点。它一般表示系统的输入变量。输出节点(阱点)
只有输入支路的节点称为输出节点。它一般表示系统的输出变量。混合节点既有输入支路又有输出支路的节点称为混合节点。它一般表示相加点、分支点。通路
从某一节点开始沿支路箭头方向经过各相连支路到另一节点所构成的路径称为通路。通路中各支路增益的乘积叫做通路增益。前向通路是指从输入节点开始并终止于输出节点且与其它节点相交不多于一次的通路。该通路的各增益乘积称为前向通路增益。31Signal-Flow
Graph
Algebra
(seeP150)Original
graphxa
byzParallel
pathsxab
zEquivalent
graph
PathgainuyG1(s)G2
(s)uG1(s)+
G2
(s)ySeries
paths(cascadenodes)Original
graphxbyzaucEquivalent
graphu
aczbcxNode
absorption16Signal-Flow
Graph
Algebra
(see
P151)33feedback
loopC
GEB
HCE
R
BC
GR
GHCC
G1
GHRGeneral
Flow-Graph
ysisGenerally,
the
SFG
for
an
arbitrarily
complex
systemcan
be
represented
by
Fig.5.25a
in
P152.Note
that
all
the
source
nodes
are
brought
to
the
left,and
all
the
sink
nodes
are
brought
to
the
right.x1x2111y1y2y3y1y2y3Signal
flow
graphFig.5.25a3417x1x2Tay1y2y3Fig.5.25bTbTcTfTTdey1
Ta
x1
Td
x2y2
Tbx1
Tex2
y3
Tc
x1
Tf
x2General
Flow-Graph
ysisThe
effect
of
the
internal
nodes
can
be
factored
out
byordinary
algebraic
processes
to
yield
the
equivalent
graphrepresented
by
Fig.5.25b.The
T’s,
called
overall
graph
transmittances,
are
the
overalltransmittances
from
a
specified
source
node
to
a
specifieddependent
node.35General
Flow-Graph
ysisFor
linear
systems
the
principle
of
superposition
(线性系统迭加原则)can
be
used
to“solve”the
graph.
That
is,thesources
can
be
considered
one
at
a
time.
Then
the
outputsignal
is
equal
to
the
sum
of
the
contributions
produced
byeach
input.The
overall
transmittances(传输增益)can
be
found
by
theordinary
processes
of
linear
algebra.The
same
results
can
by
obtained
directly
from
the
SFG.The
fact
that
they
can
produce
answers
to
large
sets
oflinear
equations
by
inspection
gives
the
SFGs
their
powerand
usefulness.3618General
Flow-Graph
ysisNote
that
the
overall
transmittance
is
the
system
transfer
function.Is
it
a
general
method
that
can
be
availableto
get
system
transfer
function??Mason’s
Gain
Formula
(MGF):
1
n
n:
the
numberofthe
overalltransmittance
T
T
Ti
i
forward
pathsis
given
by
iWhereTi
is
gain
of
theith
forward
path
between
asource
and
a
sink
node
is
the
graph
determinant,
it
is
characteristic
polynomial,
too
1
L
1
L
2
L
3
n前向通路总数Δ
特征式Δi
式nTi
i
iT
1The
Mason
Gain
Rule
(see
P152-154)n:
the
number
offorward
paths
all
possiblecombinations
1
L
1
L
2
L
3
where:L1
is
the
gain
of
each
closed
path(single
loop)ΣL1
is
thesum
of
thegains
of
all
closed
paths
in
the
graph.L2
is
the
product
of
the
gain
of
2
nontouching
loops.ΣL2
is
the
sum
of
the
products
of
gains
in
all
possiblecombinations
of
nontouching
loops
taken
two
at
a
time.L3
is
the
product
of
the
gain
of
3
nontouching
loops
in
thegraph
.
………..nontouching
loops:
loops
that
don’t
have
any
common
nodes19nTi
i
iT
1The
Mason
Gain
Rule
(seeP152-154)n:
the
number
offorward
paths
1
L
1
L
2
L
3
where:Δi
isthe
cofactor(
式,余因式)of
Ti
Δi
has
the
same
form
as
Δ.It
is
the
determinant
of
the
remaining
subgraph
when
the
forward
paththat
produces
Ti
is
removed直译:将第i条前向通路Ti移除,剩余图的特征式(特征式求法同上)另一个等价的说法:在Δ中,将与第i条前向通路相接触的回路除去后所余下的部分39Δi
is
equal
to
unity
when
the
forward
path
touches
all
the
loops
in
thegraph
or
when
the
graph
containsno
loops.40The
Mason
Gain
Rule
(see
P152-154)回路 通路的终点就是通路的起点,并且与任何其它节点相交不多于一次的通路称为回路。回路中各支路增益的乘积称为回路增益。不接触回路一个信号流图可能有多个回路,各回路之间没有任何公共节点,则称为不接触回路,反之称为接触回路。信号流图可以根据系统微分方程绘制,也可以由系统结构图按照对应关系得出。20
1
L
1
L
2
L
3
nTi
i
iT
1The
Mason
Gain
Rule
(seeP152-154)n
从输入节点到输出节点所有前向通路的条数Ti
从输入节点到输出节点第i条前向通路的增益;Δ
i
在Δ中,将与第k
条前向通路相接触的回路除去后所余下的部分,称为 式;∑L
1
所有各回路的回路增益之和;∑L
2
所有两两互不接触回路的回路增益乘积之和;∑L
3
所有三个互不接触回路的回路增益乘积之和;……….在回路增益中应包含代表反馈极性的正、负符号。n:
the
number
of
forward
paths41nTi
i
iT
1The
Mason
Gain
Rule
(see
P152-154)To
get
the
overall
transfer
function
of
a
system,
signal
flowgraphs
have
the
advantage
of
providing
a
systematic
rule
(noneed
to
simplify
graph)The
rule
is
based
onCramer’sRule
for
solving
simultaneousalgebraic
equations借助于 公式,不经任何结构变换,便可以直接求得系统的传递函数。n:
the
number
of
forward
paths
1
L
1
L
2
L
3
422143H
3H
4H1
H
2
H
5u
yH1
(s)H
3(s)H
2
(s)H
5
(s)uyH
6
H4The
flow
graph
form
is
as
followsSolution:The
Mason
Gain
Rule:
ExamplesExample-1:
find
the
overall
transferfunction.H
644H1
(s)H
2
(s)
H
5
(s)uyH
6Example-1Path
1:
H1
(s)H
2
(s)H5
(s)Path
2
:
H1
(s)H6
(s)H
3(s)
H4Step
1:
Identify
Loop
Gains
(--
magenta
in
the
graph)Loop
1:
H1
(s)H3
(s)Loop
2
:
H1
(s)H2(s)H4
(s)Step
2:
Identify
gains
of
forward
paths
from
u
to
y
(--
green
in
thegraph)The
Mason
Gain
Rule:
Examples22The
Mason
Gain
Rule:
ExamplesH1
(s)H
2
(s)
H
5
(s)uyH
6H
3(s)
H4Step
3:
Identify
Loops
not
touching
forward
path1:
NoneStep
4:
Identify
Loops
not
touching
forward
path2:
NoneStep
5:
Compute
determinants
of
path1
and
path2i
(s)
1
loop
gains
not
touching
path
i
gain
products
of
all
possible2
nontouching
loops
not
touching
path
i
gain
products
of
all
possible
3
nontouching
loops
not
touching
path
i45Example-1the
forward
paths.
Therefore1
2
1Step
6:
Compute
the
determinant
of
thesystem(s)
1
all
loop
gains
gain
products
of
all
2
loops
that
do
not
touch
gain
products
of
all
3
loops
that
do
not
touch
(s
)
1
H1
H
3
H1
H
2
H4Step
7:
Use
Mason’s
Rule
to
get
the
overall
transfer
functionG(s)
Y
(s)
H1
H2
H5
H1
H6
U
(s)
1
H1
H3
H1
H2
H446The
Mason
Gain
Rule:
ExamplesIn
this
case,
there
are
no
loops
that
do
nottouch23Example-2:
Find
the
overall
transferfunction
of
the
system
as
Fig.(a)The
Mason
Gain
Rule:
ExamplesSolution:47L1L2L3L4Step
1:
Identify
Loop
GainsThere
are
4
loops:L1=
-G1G2H1,L2=
-G2G3H2L3=
-G1G2G3,L4=
-G1G4Where
only
L2
and
L4
nontouching,L2L4=(-G2G3H2)*(-G1G4)Step
2:
The
system
determinantΔ-
L1
-
L2
-
L3
-
L4
L2L4G1G2H1G2G3H2G1G2G3G1G4
G1G2G3G4H2Example-2:
Find
the
overall
transfer
function
of
the
system
as
Fig.(a)The
Mason
Gain
Rule:
Examples4824L1L3P1The
Mason
Gain
Rule:
ExamplesExample-2:
Find
the
overall
transfer
function
of
the
system
asFig.(a)Step
3:
Identify
gains
of
forwardpaths
from
r
to
cThere
are
two
forward
paths,
n=2.P1=G1G2G3,it
touches
each
loop,
therefore
Δ1=1.P2=G1G4
,it
does
not
touch
with
loop
2,
L2=
-G2G3H2,thenΔ2=(1+
G2G3H2)P2L
L4249L1L3P1R(s)
1
12
2G1G2G3
G1G4(1
G2G3H2
)1
G1GH1
G2G3H2
G1G2G3
G1G4
G1G2G3G4
H2P2L4L2The
Mason
Gain
Rule:
ExamplesExample-2:
Find
the
overall
transfer
function
of
the
system
as
Fig.(a)Step
4:
Get
overall
transfer
function
by
Mason’s
ruleC(s)
1(P
P
)5025511
2
5L
L
L
1i
L
RCs
RCssoThere
are
six
groups
oftwo-loops
nottouching
each
other,theyareⅠ-Ⅱ、Ⅰ-Ⅲ、Ⅰ-Ⅴ、Ⅱ-Ⅲ、Ⅲ-Ⅳand
Ⅳ-Ⅴ.ThereforeExample-3:
Find
Uc/Ur
of
the
system
as
Fig.
Below.Solution:
Step
1:
Identify
LoopGainsThere
are
5
feedback
loops,
and
the
loop
transmittances
arethe
same5
L
L
i
j6R2C
2
s2The
Mason
Gain
Rule:
ExamplesThere
is
one
set
ofthree
loops
not
touching
,that
is
Ⅰ-Ⅱ-Ⅲ,theni
j
kR3C3s3
LL
L
1
Step
2:
The
system
determinant
isR2C
2
s2
R3
C3
s3
1
1
Li
Li
Lj
Li
Lj
Lk5
6
1RCsThere
is
only
one
forward
path,
n=1.1P1
R3C3s3Example-3:
Find
Uc/Ur
of
the
system
as
Fig.Step
3:
Identify
gains
offorward
paths
from
Ur
to
UcIt
touches
each
loop,
therefore
Δ1=1.The
Mason
Gain
Rule:
Examples5226Example-3:
Find
Uc/Ur
of
the
system
asFig.1
1R3C3s3Uc
P1
Ur
1
1RCsR2C
2
s2
R3C3s3
1
R3C
3s3
R2C
2
s2
RCs
1Step
4:
Get
overall
transfer
function
by
Mason’s
ruleThe
Mason
Gain
Rule:
Examples53There
are
4
feedback
loops:L1,
L2,
L3
and
L4.
And4
setsof
two-loops
are
not
touchingeach
other:
L1L3,
L1L4,
L2L3
and
L2L4.
There
is
noneset
ofthree
loops
nottouching.27(s
)
1
L1
L2
L3
L4
L1L3
L1L4
L2
L3
L2
H4Example-4:
Find
Y(s)/R(s)
of
thesystem
as
Fig.The
Mason
Gain
Rule:
ExamplesSolutionStep
1:
Identify
Loop
GainsStep
2:
The
system
determinant
is54R(s)Y(s)Step
3:
Identify
gains
of
forward
pathsn=2:
P1=G1G2G3G4,it
does
not
touch
L3
and
L4therefore
Δ1=1-
L3
-
L4.P2=G5G6G7G8,it
does
not
touch
L1
and
L2
therefore
Δ2=1-
L1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影产业创新驱动的商业模式研究
- 焊工(中级)考试题(含参考答案)
- 用户体验与品牌形象的关系研究
- 内江师范学院《书法篆刻创作》2023-2024学年第二学期期末试卷
- 南充文化旅游职业学院《生物化学及实验》2023-2024学年第二学期期末试卷
- 遵义医药高等专科学校《食品质量安全检测新技术》2023-2024学年第二学期期末试卷
- 广东理工职业学院《素描基础4》2023-2024学年第二学期期末试卷
- 内江职业技术学院《设计表现》2023-2024学年第二学期期末试卷
- 常州纺织服装职业技术学院《内科临床实训》2023-2024学年第二学期期末试卷
- 2025年中国乳酸菌行业市场全景分析及投资策略研究报告
- 北京市房山区2024-2025学年七年级上学期期末英语试题(含答案)
- 安全生产事故调查与案例分析(第3版)课件 吕淑然 第5、6章 事故案例评析、相关法律法规
- 2025年南阳科技职业学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 加油站复工复产方案
- 2025-2030年中国增韧剂(MBS高胶粉)行业发展现状及前景趋势分析报告
- 2025年高考物理复习新题速递之万有引力与宇宙航行(2024年9月)
- 2025年首都机场集团公司招聘笔试参考题库含答案解析
- 2025云南省贵金属新材料控股集团限公司面向高校毕业生专项招聘144人高频重点提升(共500题)附带答案详解
- 苏州市区2024-2025学年五年级上学期数学期末试题一(有答案)
- 暑期预习高一生物必修二知识点
- (高清版)DB43∕T 1147-2015 太阳能果蔬烘干机
评论
0/150
提交评论