版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习目标1.掌握切线长的定义及切线长定理.(重点)2.初步学会运用切线长定理进行计算与证明.(难点)第1页/共38页学习目标1.掌握切线长的定义及切线长定理.(重点)第1页/共1导入新课情境引入同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?第2页/共38页导入新课情境引入同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋2讲授新课切线长定理及应用一互动探究问题1
上节课我们学习了过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?过圆外的一点作圆的切线,可以作几条?POBAO.PAB第3页/共38页讲授新课切线长定理及应用一互动探究问题1上节课我们学习了3P1.切线长的定义:
切线上一点到切点之间的线段的长叫作这点到圆的切线长.AO①切线是直线,不能度量.②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2.切线长与切线的区别在哪里?知识要点第4页/共38页P1.切线长的定义:AO①切线是直线,不能度4问题2PA为☉O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B.
OB是☉O的一条半径吗?PB是☉O的切线吗?(利用图形轴对称性解释)
PA、PB有何关系?
∠APO和∠BPO有何关系?O.PAB第5页/共38页问题2PA为☉O的一条切线,沿着直线PO对折,设圆上与点5BPOA切线长定理:
过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.PA、PB分别切☉O于A、BPA=PB∠OPA=∠OPB几何语言:切线长定理为证明线段相等、角相等提供了新的方法.注意知识要点第6页/共38页BPOA切线长定理:PA、PB分别切☉O于A、BPA=6O.P已知,如图PA、PB是☉O的两条切线,A、B为切点.求证:PA=PB,∠APO=∠BPO.证明:∵PA切☉O于点A,∴OA⊥PA.同理可得OB⊥PB.∵OA=OB,OP=OP,∴Rt△OAP≌Rt△OBP,∴PA=PB,∠APO=∠BPO.推理验证AB第7页/共38页O.P已知,如图PA、PB是☉O的两条切线,A、B为切点.证7想一想:若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB.证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB
,∠OPA=∠OPB∴△PAB是等腰三角形,PM为顶角的平分线∴OP垂直平分AB.O.PABM第8页/共38页想一想:若连结两切点A、B,AB交OP于点M.你又能得出什么8想一想:若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.证明:∵PA,PB是⊙O的切线,点A,B是切点,∴PA=PB
,∠OPA=∠OPB.∴PC=PC.∴△PCA≌△PCB,
∴AC=BC.CA=CBO.PABC第9页/共38页想一想:若延长PO交⊙O于点C,连结CA、CB,你又能得出什9典例精析例1
已知:如图,四边形ABCD的边AB、BC、CD、DA与⊙O分别相切与点E、F、G、H.求证:AB+CD=AD+BC.·ABCDO证明:∵AB、BC、CD、DA与⊙O分别相切与点E、F、G、H,EFGH∴AE=AH,BE=BF,CG=CF,DG=DH.∴AE+BE+CG+DG=AH+BF+CF+DH.∴AB+CD=AD+BC.第10页/共38页典例精析例1已知:如图,四边形ABCD的边AB、BC、C10例2
为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径.解析:欲求半径OP,取圆的圆心为O,连OA,OP,由切线性质知△OPA为直角三角形,从而在Rt△OPA中由勾股定理易求得半径.O第11页/共38页例2为了测量一个圆形铁环的半径,某同学采用了如下办法:将11在Rt△OPA中,PA=5,∠POA=30°,OQ解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO+∠BAC=180°,∴∠PAO=∠QAO=60°.即铁环的半径为第12页/共38页在Rt△OPA中,PA=5,∠POA=30°,OQ解:过O作12BPOAPA、PB是☉O的两条切线,A,B是切点,OA=3.(1)若AP=4,则OP=
;(2)若∠BPA=60°,则OP=
.56练一练第13页/共38页BPOAPA、PB是☉O的两条切线,A,B是切点,OA=3.13
小明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?三角形的内切圆及作法二互动探究第14页/共38页小明在一家木料厂上班,工作之余想对厂里的三角形废料进14问题1如果最大圆存在,它与三角形三边应有怎样的位置关系?
OOOO最大的圆与三角形三边都相切第15页/共38页问题1如果最大圆存在,它与三角形三边应有怎样的位置关系15三角形角平分线的这个性质,你还记得吗?问题2如何求作一个圆,使它与已知三角形的三边都相切?
(1)如果半径为r的☉I与△ABC的三边都相切,那么圆心I应满足什么条件?(2)在△ABC的内部,如何找到满足条件的圆心I呢?
圆心I到三角形三边的距离相等,都等于r.三角形三条角平分线交于一点,这一点与三角形的三边距离相等.圆心I应是三角形的三条角平分线的交点.为什么呢?第16页/共38页三角形角平分线的这个性质,你还记得吗?问题2如何求作一16已知:△ABC.求作:和△ABC的各边都相切的圆.MND作法:1.作∠B和∠C的平分线BM和CN,交点为O.2.过点O作OD⊥BC.垂足为D.3.以O为圆心,OD为半径作圆O.☉O就是所求的圆.做一做第17页/共38页已知:△ABC.MND作法:☉O就是所求的圆.做一做第17页171.与三角形三边都相切的圆叫作三角形的内切圆.2.三角形内切圆的圆心叫做这个三角形的内心.3.这个三角形叫做这个圆的外切三角形.BACI
☉I是△ABC的内切圆,点I是△ABC的内心,△ABC是☉I的外切三角形.知识要点第18页/共38页1.与三角形三边都相切的圆叫作三角形的内切圆.2.三角形内切18三角形的内心的性质三BACI问题1如图,☉I是△ABC的内切圆,那么线段OA,OB,OC有什么特点?互动探究线段OA,OB,OC分别是∠A,∠B,∠C的平分线.第19页/共38页三角形的内心的性质三BACI问题1如图,☉I是△ABC的19BACI问题2如图,分别过点作AB、AC、BC的垂线,垂足分别为E、F,G,那么线段IE、IF、IG之间有什么关系?EFGIE=IF=IG第20页/共38页BACI问题2如图,分别过点作AB、AC、BC的垂线,垂20知识要点三角形内心的性质三角形的内心在三角形的角平分线上.三角形的内心到三角形的三边距离相等.BACIEFG
IA,IB,IC是△ABC的角平分线,IE=IF=IG.第21页/共38页知识要点三角形内心的性质三角形的内心在三角形的角平分线上.三21例3
如图,△ABC中,∠B=43°,∠C=61°,点I是△ABC的内心,求∠
BIC的度数.解:连接IB,IC.ABCI∵点I是△ABC的内心,∴IB,IC分别是∠B,∠C的平分线,在△IBC中,第22页/共38页例3如图,△ABC中,∠B=43°,∠C=61°,点22例4
如图,一个木模的上部是圆柱,下部是底面为等边三角形的直三棱柱.圆柱的下底面圆是直三棱柱上底面等边三角形的内切圆,已知直三棱柱的底面等边三角形的边长为3cm,求圆柱底面圆的半径.该木模可以抽象为几何如下几何图形.第23页/共38页例4如图,一个木模的上部是圆柱,下部是底面为等边三角形23CABrOD解:如图,设圆O切AB于点D,连接OA、OB、OD.∵圆O是△ABC的内切圆,∴AO、BO是∠BAC、∠ABC的角平分线∵△ABC是等边三角形,∴∠OAB=∠OBA=30o∵OD⊥AB,AB=3cm,∴AD=BD=AB=1.5(cm)∴OD=AD·tan30o=(cm)答:圆柱底面圆的半径为cm.第24页/共38页CABrOD解:如图,设圆O切AB于点D,连接OA、OB、24例5△ABC的内切圆☉O与BC、CA、AB分别相切于点D、E、F,且AB=13cm,BC=14cm,CA=9cm,求AF、BD、CE的长.想一想:图中你能找出哪些相等的线段?理由是什么?BACEDFO第25页/共38页例5△ABC的内切圆☉O与BC、CA、AB分别相切于点D25解:设AF=xcm,则AE=xcm.∴CE=CD=AC-AE=9-x(cm),
BF=BD=AB-AF=13-x(cm).由
BD+CD=BC,可得
(13-x)+(9-x)=14,∴AF=4(cm),BD=9(cm),CE=5(cm).方法小结:关键是熟练运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.解得
x=4.ACEDFO第26页/共38页解:设AF=xcm,则AE=xcm.∴CE=CD=AC-AE26比一比名称确定方法图形性质外心:三角形外接圆的圆心内心:三角形内切圆的圆心三角形三边中垂线的交点1.OA=OB=OC2.外心不一定在三角形的内部.三角形三条角平分线的交点1.到三边的距离相等;2.OA、OB、OC分别平分∠BAC、∠ABC、∠ACB3.内心在三角形内部.ABOABCO第27页/共38页比一比名称确定方法图形性质外心:三角形外接圆的圆心内心:三角27CABOD1.求边长为6cm的等边三角形的内切圆半径与外接圆半径.解:如图,由题意可知BC=6cm,∠ABC=60°,OD⊥BC,OB平分∠ABC.∴∠OBD=30°,BD=3cm,△OBD为直角三角形.内切圆半径外接圆半径练一练第28页/共38页CABOD1.求边长为6cm的等边三角形的内切圆半径与外接28变式:求边长为a的等边三角形的内切圆半径r与外接圆半径R的比.sin∠OBD=sin30°=CABRrOD第29页/共38页变式:sin∠OBD=sin30°=CAB29ABCODEFABCDEFO2.设△ABC的面积为S,周长为L,△ABC内切圆的半径为r,则S,L与r之间存在怎样的数量关系?第30页/共38页ABCODEFABCDEFO2.设△ABC的面积为S,周长为30ABCOcDEr3.如图,直角三角形的两直角边分别是a、b,斜边为c,则其内切圆的半径r为___________(以含a、b、c的代数式表示r).解析:过点O分别作AC,BC,AB的垂线,垂足分别为D,E,F.F则AD=AC-DC=b-r,BF=BC-CE=a-r,因为AF=AD,BF=BE,AF+BF=c,所以a-r+b-r=c,所以第31页/共38页ABCOcDEr3.如图,直角三角形的两直角边分别是a、b,31A2.如图,已知点O是△ABC
的内心,且∠ABC=60°,∠ACB=80°,则∠BOC=
.1.如图,PA、PB是☉O的两条切线,切点分别是A、B,如果AP=4,∠APB=40°,则∠APO=
,PB=
.BPOA第1题BCO第2题当堂练习20°4110°第32页/共38页A2.如图,已知点O是△ABC的内心,且∠ABC=6032(3)若∠BIC=100°,则∠A=
度.(2)若∠A=80°,则∠BIC=
度.130203.如图,在△ABC中,点I是内心,(1)若∠ABC=50°,∠ACB=70°,∠BIC=_____.ABCI(4)试探索:∠A与∠BIC之间存在怎样的数量关系?120°第33页/共38页(3)若∠BIC=100°,则∠A=度334.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC相切于点D.求证:DE∥OC.证明:连接OD,∵AC切⊙O点D,∴OD⊥AC,∴∠ODC=∠B=90°.在Rt△OCD和Rt△OCB中,OD=OB,OC=OC∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC.∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,∴∠BOC=∠OED,∴DE∥OC.第34页/共38页4.如图所示,已知在△ABC中,∠B=90°,O是AB上一点34方法二:证明:连接BD,∵AC切⊙O于点D,AC切⊙O于点B,∴DC=BC,OC平分∠DCB.∴OC⊥BD.∵BE为⊙O的直径,∴DE⊥BD.∴DE∥OC.第35页/共38页方法二:第35页/共38页355.如图,△ABC中,I是内心,∠A的平分线和△ABC的外接圆相交于点D.求证:DI=DB.证明:连接BI.∵I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠CBI,∵∠CBD=∠CAD,∴∠BAD=∠CBD,∵∠BID=∠BAD+∠ABI,∠IBD=∠CBI+∠CBD,∴∠BID=∠IBD,∴BD=ID.第36页/共38页5.如图,△ABC中,I是内心,∠A的平分线和△ABC的外接36切线长切线长定理作用图形的轴对称性原理提供了证线段和角相等的新方法辅助线分别连接圆心和切点;连接两切点;连接圆心和圆外一点.三角形内切圆运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.有关概念内心概念及性质应用课堂小结第37页/共38页切线长切线长定理作用图形的轴对称性原理提供了证线段和辅助线分37感谢您的欣赏第38页/共38页感谢您的欣赏第38页/共38页38学习目标1.掌握切线长的定义及切线长定理.(重点)2.初步学会运用切线长定理进行计算与证明.(难点)第1页/共38页学习目标1.掌握切线长的定义及切线长定理.(重点)第1页/共39导入新课情境引入同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?第2页/共38页导入新课情境引入同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋40讲授新课切线长定理及应用一互动探究问题1
上节课我们学习了过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?过圆外的一点作圆的切线,可以作几条?POBAO.PAB第3页/共38页讲授新课切线长定理及应用一互动探究问题1上节课我们学习了41P1.切线长的定义:
切线上一点到切点之间的线段的长叫作这点到圆的切线长.AO①切线是直线,不能度量.②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2.切线长与切线的区别在哪里?知识要点第4页/共38页P1.切线长的定义:AO①切线是直线,不能度42问题2PA为☉O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B.
OB是☉O的一条半径吗?PB是☉O的切线吗?(利用图形轴对称性解释)
PA、PB有何关系?
∠APO和∠BPO有何关系?O.PAB第5页/共38页问题2PA为☉O的一条切线,沿着直线PO对折,设圆上与点43BPOA切线长定理:
过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.PA、PB分别切☉O于A、BPA=PB∠OPA=∠OPB几何语言:切线长定理为证明线段相等、角相等提供了新的方法.注意知识要点第6页/共38页BPOA切线长定理:PA、PB分别切☉O于A、BPA=44O.P已知,如图PA、PB是☉O的两条切线,A、B为切点.求证:PA=PB,∠APO=∠BPO.证明:∵PA切☉O于点A,∴OA⊥PA.同理可得OB⊥PB.∵OA=OB,OP=OP,∴Rt△OAP≌Rt△OBP,∴PA=PB,∠APO=∠BPO.推理验证AB第7页/共38页O.P已知,如图PA、PB是☉O的两条切线,A、B为切点.证45想一想:若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB.证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB
,∠OPA=∠OPB∴△PAB是等腰三角形,PM为顶角的平分线∴OP垂直平分AB.O.PABM第8页/共38页想一想:若连结两切点A、B,AB交OP于点M.你又能得出什么46想一想:若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.证明:∵PA,PB是⊙O的切线,点A,B是切点,∴PA=PB
,∠OPA=∠OPB.∴PC=PC.∴△PCA≌△PCB,
∴AC=BC.CA=CBO.PABC第9页/共38页想一想:若延长PO交⊙O于点C,连结CA、CB,你又能得出什47典例精析例1
已知:如图,四边形ABCD的边AB、BC、CD、DA与⊙O分别相切与点E、F、G、H.求证:AB+CD=AD+BC.·ABCDO证明:∵AB、BC、CD、DA与⊙O分别相切与点E、F、G、H,EFGH∴AE=AH,BE=BF,CG=CF,DG=DH.∴AE+BE+CG+DG=AH+BF+CF+DH.∴AB+CD=AD+BC.第10页/共38页典例精析例1已知:如图,四边形ABCD的边AB、BC、C48例2
为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径.解析:欲求半径OP,取圆的圆心为O,连OA,OP,由切线性质知△OPA为直角三角形,从而在Rt△OPA中由勾股定理易求得半径.O第11页/共38页例2为了测量一个圆形铁环的半径,某同学采用了如下办法:将49在Rt△OPA中,PA=5,∠POA=30°,OQ解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO+∠BAC=180°,∴∠PAO=∠QAO=60°.即铁环的半径为第12页/共38页在Rt△OPA中,PA=5,∠POA=30°,OQ解:过O作50BPOAPA、PB是☉O的两条切线,A,B是切点,OA=3.(1)若AP=4,则OP=
;(2)若∠BPA=60°,则OP=
.56练一练第13页/共38页BPOAPA、PB是☉O的两条切线,A,B是切点,OA=3.51
小明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?三角形的内切圆及作法二互动探究第14页/共38页小明在一家木料厂上班,工作之余想对厂里的三角形废料进52问题1如果最大圆存在,它与三角形三边应有怎样的位置关系?
OOOO最大的圆与三角形三边都相切第15页/共38页问题1如果最大圆存在,它与三角形三边应有怎样的位置关系53三角形角平分线的这个性质,你还记得吗?问题2如何求作一个圆,使它与已知三角形的三边都相切?
(1)如果半径为r的☉I与△ABC的三边都相切,那么圆心I应满足什么条件?(2)在△ABC的内部,如何找到满足条件的圆心I呢?
圆心I到三角形三边的距离相等,都等于r.三角形三条角平分线交于一点,这一点与三角形的三边距离相等.圆心I应是三角形的三条角平分线的交点.为什么呢?第16页/共38页三角形角平分线的这个性质,你还记得吗?问题2如何求作一54已知:△ABC.求作:和△ABC的各边都相切的圆.MND作法:1.作∠B和∠C的平分线BM和CN,交点为O.2.过点O作OD⊥BC.垂足为D.3.以O为圆心,OD为半径作圆O.☉O就是所求的圆.做一做第17页/共38页已知:△ABC.MND作法:☉O就是所求的圆.做一做第17页551.与三角形三边都相切的圆叫作三角形的内切圆.2.三角形内切圆的圆心叫做这个三角形的内心.3.这个三角形叫做这个圆的外切三角形.BACI
☉I是△ABC的内切圆,点I是△ABC的内心,△ABC是☉I的外切三角形.知识要点第18页/共38页1.与三角形三边都相切的圆叫作三角形的内切圆.2.三角形内切56三角形的内心的性质三BACI问题1如图,☉I是△ABC的内切圆,那么线段OA,OB,OC有什么特点?互动探究线段OA,OB,OC分别是∠A,∠B,∠C的平分线.第19页/共38页三角形的内心的性质三BACI问题1如图,☉I是△ABC的57BACI问题2如图,分别过点作AB、AC、BC的垂线,垂足分别为E、F,G,那么线段IE、IF、IG之间有什么关系?EFGIE=IF=IG第20页/共38页BACI问题2如图,分别过点作AB、AC、BC的垂线,垂58知识要点三角形内心的性质三角形的内心在三角形的角平分线上.三角形的内心到三角形的三边距离相等.BACIEFG
IA,IB,IC是△ABC的角平分线,IE=IF=IG.第21页/共38页知识要点三角形内心的性质三角形的内心在三角形的角平分线上.三59例3
如图,△ABC中,∠B=43°,∠C=61°,点I是△ABC的内心,求∠
BIC的度数.解:连接IB,IC.ABCI∵点I是△ABC的内心,∴IB,IC分别是∠B,∠C的平分线,在△IBC中,第22页/共38页例3如图,△ABC中,∠B=43°,∠C=61°,点60例4
如图,一个木模的上部是圆柱,下部是底面为等边三角形的直三棱柱.圆柱的下底面圆是直三棱柱上底面等边三角形的内切圆,已知直三棱柱的底面等边三角形的边长为3cm,求圆柱底面圆的半径.该木模可以抽象为几何如下几何图形.第23页/共38页例4如图,一个木模的上部是圆柱,下部是底面为等边三角形61CABrOD解:如图,设圆O切AB于点D,连接OA、OB、OD.∵圆O是△ABC的内切圆,∴AO、BO是∠BAC、∠ABC的角平分线∵△ABC是等边三角形,∴∠OAB=∠OBA=30o∵OD⊥AB,AB=3cm,∴AD=BD=AB=1.5(cm)∴OD=AD·tan30o=(cm)答:圆柱底面圆的半径为cm.第24页/共38页CABrOD解:如图,设圆O切AB于点D,连接OA、OB、62例5△ABC的内切圆☉O与BC、CA、AB分别相切于点D、E、F,且AB=13cm,BC=14cm,CA=9cm,求AF、BD、CE的长.想一想:图中你能找出哪些相等的线段?理由是什么?BACEDFO第25页/共38页例5△ABC的内切圆☉O与BC、CA、AB分别相切于点D63解:设AF=xcm,则AE=xcm.∴CE=CD=AC-AE=9-x(cm),
BF=BD=AB-AF=13-x(cm).由
BD+CD=BC,可得
(13-x)+(9-x)=14,∴AF=4(cm),BD=9(cm),CE=5(cm).方法小结:关键是熟练运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.解得
x=4.ACEDFO第26页/共38页解:设AF=xcm,则AE=xcm.∴CE=CD=AC-AE64比一比名称确定方法图形性质外心:三角形外接圆的圆心内心:三角形内切圆的圆心三角形三边中垂线的交点1.OA=OB=OC2.外心不一定在三角形的内部.三角形三条角平分线的交点1.到三边的距离相等;2.OA、OB、OC分别平分∠BAC、∠ABC、∠ACB3.内心在三角形内部.ABOABCO第27页/共38页比一比名称确定方法图形性质外心:三角形外接圆的圆心内心:三角65CABOD1.求边长为6cm的等边三角形的内切圆半径与外接圆半径.解:如图,由题意可知BC=6cm,∠ABC=60°,OD⊥BC,OB平分∠ABC.∴∠OBD=30°,BD=3cm,△OBD为直角三角形.内切圆半径外接圆半径练一练第28页/共38页CABOD1.求边长为6cm的等边三角形的内切圆半径与外接66变式:求边长为a的等边三角形的内切圆半径r与外接圆半径R的比.sin∠OBD=sin30°=CABRrOD第29页/共38页变式:sin∠OBD=sin30°=CAB67ABCODEFABCDEFO2.设△ABC的面积为S,周长为L,△ABC内切圆的半径为r,则S,L与r之间存在怎样的数量关系?第30页/共38页ABCODEFABCDEFO2.设△ABC的面积为S,周长为68ABCOcDEr3.如图,直角三角形的两直角边分别是a、b,斜边为c,则其内切圆的半径r为___________(以含a、b、c的代数式表示r).解析:过点O分别作AC,BC,AB的垂线,垂足分别为D,E,F.F则AD=AC-DC=b-r,BF=BC-CE=a-r,因为AF=AD,BF=BE,AF+BF=c,所以a-r+b-r=c,所以第3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉溪师范学院《数据结构与算法》2021-2022学年期末试卷
- 玉溪师范学院《模拟电子技术实验》2021-2022学年期末试卷
- 道路运输企业主要负责人理论考试题及答案-知识题库
- 国际金融实务教案
- 第一新声-2024年中国CRM市场研究报告
- 2024年玻璃石材家具项目成效分析报告
- 2024届河北省石家庄市晋州一中第一次高中毕业生复习统一检测试题数学试题
- 2024届广西壮族自治区桂林市人教A版高中数学试题高三二轮函数的图象与性质测试
- 2024届广西钦州市第三中学高三数学试题3月25日第4周测试题
- 采购合同履约检查方案
- 幼儿园中班语言《听》(课堂PPT)
- 办公生活区临建施工实施方案
- 钢结构厂房施工进度横道图
- 例谈小升初考场作文的扣题
- 中国华电集团公司KKS电厂标识系统编码
- 九年级家长会PPT课件
- 基层反映类信息大汇总情况
- 常见观赏鱼分类.PPT
- XP-3180使用说明书
- I-am-a-bunny-课件PPT
- 幼儿《教育心理学》模拟题:情景题
评论
0/150
提交评论