2023年吉林省长春市八中高三一诊考试数学试卷(含答案解析)_第1页
2023年吉林省长春市八中高三一诊考试数学试卷(含答案解析)_第2页
2023年吉林省长春市八中高三一诊考试数学试卷(含答案解析)_第3页
2023年吉林省长春市八中高三一诊考试数学试卷(含答案解析)_第4页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.观察下列各式:,,,,,,,,根据以上规律,则()A. B. C. D.2.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()3.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B.4月份仅有三个城市居民消费价格指数超过102C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势4.已知三棱锥中,是等边三角形,,则三棱锥的外接球的表面积为()A. B. C. D.5.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()A. B. C. D.6.公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为()A.米 B.米C.米 D.米7.等差数列的前项和为,若,,则数列的公差为()A.-2 B.2 C.4 D.78.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.9.函数的图象可能为()A. B.C. D.10.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A. B. C. D.11.若,,,则下列结论正确的是()A. B. C. D.12.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在处的切线斜率为________.14.已知椭圆:的左、右焦点分别为,,如图是过且垂直于长轴的弦,则的内切圆方程是________.15.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为______________.16.如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求曲线在点处的切线方程;(2)若对任意的,当时,都有恒成立,求最大的整数.(参考数据:)18.(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.19.(12分)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.20.(12分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.21.(12分)超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n()份血液样本,每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验n次;(2)混合检验,将其中k(且)份血液样本分别取样混合在一起检验,若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p().(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.(i)试运用概率统计的知识,若,试求p关于k的函数关系式;(ii)若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:,,,,22.(10分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】

每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算.【题目详解】以及数列的应用根据题设条件,设数字,,,,,,,构成一个数列,可得数列满足,则,,.故选:B.【答案点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项.2.B【答案解析】

如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【题目详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【答案点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.3.D【答案解析】

采用逐一验证法,根据图表,可得结果.【题目详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D【答案点睛】本题考查图表的认识,审清题意,细心观察,属基础题.4.D【答案解析】

根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【题目详解】设为中点,是等边三角形,所以,又因为,且,所以平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,,即,解得,所以三棱锥的外接球表面积为,故选:D.【答案点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.5.B【答案解析】

设左焦点的坐标,由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【题目详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为:所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【答案点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.6.D【答案解析】

根据题意,是一个等比数列模型,设,由,解得,再求和.【题目详解】根据题意,这是一个等比数列模型,设,所以,解得,所以.故选:D【答案点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.7.B【答案解析】

在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【题目详解】在等差数列的前项和为,则则故选:B【答案点睛】本题考查等差数列中求由已知关系求公差,属于基础题.8.C【答案解析】

分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【题目详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为:故答案为:C.【答案点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).9.C【答案解析】

先根据是奇函数,排除A,B,再取特殊值验证求解.【题目详解】因为,所以是奇函数,故排除A,B,又,故选:C【答案点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.10.A【答案解析】

结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【题目详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【答案点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.11.D【答案解析】

根据指数函数的性质,取得的取值范围,即可求解,得到答案.【题目详解】由指数函数的性质,可得,即,又由,所以.故选:D.【答案点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.12.A【答案解析】

先求出平移后的函数解析式,结合图像的对称性和得到A和.【题目详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【答案点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

求导后代入可构造方程求得,即为所求斜率.【题目详解】,,解得:,即在处的切线斜率为.故答案为:.【答案点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.14.【答案解析】

利用公式计算出,其中为的周长,为内切圆半径,再利用圆心到直线AB的距离等于半径可得到圆心坐标.【题目详解】由已知,,,,设内切圆的圆心为,半径为,则,故有,解得,由,或(舍),所以的内切圆方程为.故答案为:.【答案点睛】本题考查椭圆中三角形内切圆的方程问题,涉及到椭圆焦点三角形、椭圆的定义等知识,考查学生的运算能力,是一道中档题.15.【答案解析】

连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【题目详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率.故答案为:【答案点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.16.,【答案解析】

根据图象得出该函数的最大值和最小值,可得,,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.【题目详解】由图象可知,,,,,从题图中可以看出,从时是函数的半个周期,则,.又,,得,取,所以,.故答案为:,.【答案点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)2【答案解析】

(1)先求得切点坐标,利用导数求得切线的斜率,由此求得切线方程.(2)对分成,两种情况进行分类讨论.当时,将不等式转化为,构造函数,利用导数求得的最小值(设为)的取值范围,由的得在上恒成立,结合一元二次不等式恒成立,判别式小于零列不等式,解不等式求得的取值范围.【题目详解】(1)已知函数,则处即为,又,,可知函数过点的切线为,即.(2)注意到,不等式中,当时,显然成立;当时,不等式可化为令,则,,所以存在,使.由于在上递增,在上递减,所以是的唯一零点.且在区间上,递减,在区间上,递增,即的最小值为,令,则,将的最小值设为,则,因此原式需满足,即在上恒成立,又,可知判别式即可,即,且可以取到的最大整数为2.【答案点睛】本小题主要考查利用导数求切线方程,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,属于难题.18.(1),函数的单调递增区间为;(2).【答案解析】

(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值的比值的取值范围,结合已知是锐角三角形,三角形内角和定理,最后求出的取值范围.【题目详解】解:(1)由已知,所以因此令得因此函数的单调递增区间为(2)由已知,∴由得,因此所以因为为锐角三角形,所以,解得因此,那么【答案点睛】本题考查了降幂公式、辅助角公式,考查了正弦定理,考查了正弦型三角函数的单调性,考查了数学运算能力.19.(1)见解析;(2)【答案解析】

分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式;(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.详解:(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.20.(1)当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)证明见解析【答案解析】

(1)对求导,分,,进行讨论,可得的单调性;(2)在定义域内是是增函数,由(1)可知,,设,可得,则,设,对求导,利用其单调性可证明.【题目详解】解:的定义域为,因为,所以,当时,令,得,令,得;当时,则,令,得,或,令,得;当时,,当时,则,令,得;综上所述,当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)在定义域内是是增函数,由(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论