全等三角形教案_第1页
全等三角形教案_第2页
全等三角形教案_第3页
全等三角形教案_第4页
全等三角形教案_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第全等三角形教案全等三角形教案1

〖教学目标〗

◆1、探索两个直角三角形全等的条件.

◆2、掌握两个直角三角形全等的条件〔hl〕.

◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.

〖教学重点与难点〗

◆教学重点:直角三角形全等的判定的方法“hl〞.

◆教学难点:直角三角形判定方法的说理过程.

〖教学过程〗

一、创设情境,引入新课:

教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?

二、合作学习:

〔1〕回忆:判定两个直角三角形全等已经有哪些方法?

〔2〕有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。

教师归纳出方法后,要学生注意两点:“hl〞是仅适用于rt△的特殊方法。

(3)教师引导、学生练习p47

三、应用新知,稳固概念

例题讲评

例::p是∠aob内一点,pd⊥oa,pe⊥ob,d,e分别是垂足,且pd=pe,那么点p在∠aob的平分线上,请说明理由。

分析:引导猜测可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop

小结:角平分线的又一个性质:〔判定一个点是否在一个角的平分线上的方法〕

角的内部,到角的两边距离相等的点,在这个角的平分线上。

四、学生练习,稳固提高

练一练:p481.2.p493

五、小结回忆,反思提高

〔1〕本节内容学的是什么?你认为学习本节内容应注意些什么?

〔2〕学习本节内容你有哪些体会?

〔3〕你认为有没有其他的方法可以证明直角三角形全等〔勾股定理〕

〔4〕你现在知道的有关角平分线的知识有哪些?

六、布置作业

全等三角形教案2

1.使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2.继续培养学生画图、实验,发现新知识的能力.

1.难点:让学生掌握边边边公理的内容和运用公理的自觉性;

2.重点:灵活运用SSS判定两个三角形是否全等.

一、创设问题情境,引入新课

请问同学,老师在黑板上画得两个三角形,△ABC与△全等吗?你是如何判定的.

(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等.)

上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全

等.满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究.

二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段,分别为,你能画出这个三角形吗?

先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并表达书写出步骤.

步骤:

(1)画一线段AB使它的长度等于c(4.8cm).

(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.

(3)连结AC、BC.

△ABC即为所求

把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的结论

请你结合画图、比照,说说你发现了什么?

同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的.这样我们就得到判定三角形全等的一种简便的方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为边边边,或简记为(S.S.S.).

2、问题2:你能用相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)

3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

4、范例:

例1如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.解:AD=BC,AB=DC,又因为AC是公共边,由(S.S.S.)全等判定法,可知△ABC≌△CDA

5、练习:

6、试一试:一个三角形的三个内角分别为、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比拟,你发现了什么?

(所画出的三角形都是相似的,但大小不一定相同).

三个对应角相等的两个三角形不一定全等.

三、加强练习,稳固知识

1、如图,,,△ABC≌△DCB全等吗?为什么?

2、如图,AD是△ABC的中线,.与相等吗?请说明理由.

四、小结

本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等.三个角对应相等的两个三角不一定会全等.

五、作业

全等三角形教案3

教材分析:

《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几局部内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比拟得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了时机。

设计理念:

针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些根本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而到达会辨、会找、会用全等三角形知识的目的。

教学目标:

1、通过全等三角形的概念和识别方法的复习,让学生体会区分、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养学生观察和理解能力,几何语言的表达能力及运用全等知识解决实际问题的能力。

3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。

教学的重点和难点:

重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

教学过程设计:

一、创设问题情境:

某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保存哪一块?(教师用多媒体)

师:请同学们先独立思考,然后小组交流意见

生:…………

师:上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。(引出课题)。

师:识别三角形及等的方法有哪些?

生:SAS、SSS、ASA、AAS、HL。

复习回忆:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,那么A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由()

练习2、AB//DE,且AB=DE,

(1)请你只添加一个条件,使△ABC≌△DEF,

你添加的条件是

(2)添加条件后,证明△ABC≌△DEF?

[根据不同的添加条件,要求学生能够表达三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]

二、探求新知:

师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?

请同组合作,交流,并把有代表性的摆放进行投影。

熟记全等三角形的根本形式,为探求全等三角形打下根底,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。

例1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。

(1)求证:AB⊥ED

(2)假设PB=BC,请找出右图中全等三角形,并给予证明。

用多媒体演示图形的变化过程。

师:图3中AB与ED有怎样的位置关系?同学生猜测一下结果。

生甲:AB垂直ED

师:为什么?可以从几方面来考虑?

生乙:可以从图形运动变化的过程来考虑

生丙:可以考虑全等在条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

(根据学生的答复,教师板演)

师:假设PB=BC,找出右图中全等三角形,看看谁能找得最快?

生丁:△PBD≌△CBA(ASA)

师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

师:还有其他三角形全等吗?

生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜测,努力探求,在学生的表达过程中,教师及时纠正学生表达中的错误,训练学生严谨的学习态度和学习习惯。)

例2、(动手画)(1)OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。

教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。

师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度

关系如何?

生:根本相等。

生:长度相等。

师:如何来证明他们相等?注意审题。

学生先独立思考后,组内交流,等到有同学举手发言。

生:在AC上取点H,使AH=AE,那么△AEF≌△AHF那么EF=FH

师:为什么要这么做?你是怎么想到的?

生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

师:这样只能得到EF=FH。

生:再证明△FHC≌△FDC。

生:先求出AD、CE是角平分线∠APC=1200,那么∠DPC=∠EPA=∠APH=600,所以∠HPC=

∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。

(看清题意,猜测结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)

师生共同小结:

1、熟记全等三角形的根本形态,会找全等三角形的对应边和对应角。

2、在错综复杂的几何图形中能够寻找全等三角形。

3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

4、运用全等三角形的识别法可以解决很多生活实际问题。

作业:

1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?假设成立,请证明,假设不成立,请说明理由。

2、书本课后复习题

教学反思:

本教学设计从以下三方面考虑:

1、根据学生的学习情况,改良学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的气氛,让学生真正成为课堂主体。

2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活泼,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新

3、重视对学生学习习惯的培养,全等三角形是几何局部内容说明书,有较强逻辑性,教师板演,以及在学生表达中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。

全等三角形教案4

一、引言

根据《全日制义务教育数学课程标准》具体目标,结合学生已有的知识经验和认知水平,提供具有探究性的问题,让学生主动参与到解决问题的数学活动中,理性思考、大胆猜测,合理推断,从何培养学生的逻辑思维能力,开展学生的数学观念和数学思想,使学生形成良好的思维品质,到达启迪思维、开发智力的目的。此案例就构造三角形全等为例,谈谈在课堂教学中如何开展学生的直觉思维,培养其创新意识。

二、全等三角形知识点的地位和作用

全等三角形表达的是一种十分重要的保距变换,许多图形中线段之间,角之间的相互关系经常通过三角形全等来判断、得出,三角形全等还是根本尺规作图的根本依据。由于全等三角形的判定及对全等三角形边、角之间的关系处理涉及推理,因此通过学习全等三角形知识对培养学生的逻辑推理和表达能力有着非常重要的作用。

三、全等三角形判定教学例子

假设情景:

某次组织学生参加生日聚会,需要裁剪小旗帜,如何让小旗帜和第一个剪裁的大小完全相同呢?

由学生尝试把实际问题转化为数学问题:怎样画一个三角形与三角形全等?在解决这个问题的过程中,鼓励学生大胆猜测,激发同学们的主动性和创造性。学生可能会提出:测出参照三条边的长度,或量出三个角的度数,或测量一条边、一个角的方案等。对于这些方案教师不急于评价,先引导学生分析各种方案的共同特点:都是先通过三角形的边、角的条件画出一个三角形与原三角形全等;不同点是所需条件的个数不同。学生的思维在此产生碰撞:谁的想法可行呢?要使两个三角形全等到底需要满足哪些条件?进一步明确本节课研究的方向,引出课题。

学生在探究过程中会根据已有的知识积累,利用“几何画板〞作图探究,举出反例来说明一个条件或两个条件画出的三角形与三角形不一定全等,这时教师鼓励学生画出尽可能类型的反例,并引导学生将举出的反例进行分类,初步体验分类的数学思想,为下一步三个条件画出三角形与三角形全等打下根底。

在讨论过程中,教师以合作者的身份深入到小组中,与同学交流,了解学生的探究过程并给予适当点拨,然后全班交流小组讨论结果,归纳出可能的分类情况:

按三角形边和角的个数可分为:三边、三角、两角一边、两边一角。

个别小组可能会提出根据边和角的位置关系,两边一角可继续分为两边及夹角和两边及一边对角,两角一边可继续分为两角及夹边和两角及一角对边。

对学生的严谨求实的学习态度教师要给予充分的可定和赞赏。

在此问题的解决过程中,不仅训练了学生将知识分类,并使学生充分感受到团队合作的重要意义和交流沟通的重要性。在探索过程中,对于三边、三角、两角及夹边、两边及夹角这四种情况学生很容易验证,而只有两角及一角对边和两边及一边对角条件是讨论的焦点。

这时,教师留给学生充分的思考时间,经过交流,学生能够得出利用三角形的内角和定理,两角及一角对边的条件可以转化为两角及夹边的情况。而在画两边及一边对角的三角形时,学生可能得出这样几种结果:

〔1〕画出的三角形与原三角形全等;(2)画出的三角形与原三角形不全等;(3)画出了两个三角形;

此时,留给学生更多的时间,充分讨论,达成共识:此条件能够得到两个不同的三角形;为突破该难点,教师利用画板展示作图过程,深入分析产生两个三角形的原因,使学生进一步明确两边及一边对角不能作为判定三角形全等的条件。在此过程中,教师对个别学生富有个性的学习表现给予肯定和鼓励,让同学们感受到成功的喜悦。

难点的突破力求发挥自主学习的优越性,放手让学生去探索,在师生互动、生生互动的气氛中使学生思维的灵活性和创造性得到开展。

最后展示实验的结果,得出一般结论:根据三边、两边及夹角、两角及夹边、两角及一角对边这四种条件画出的三角形与原三角形全等。

四、全等三角形的教学反思

在三角形全等的教学过程中,因有实例比拟,学生对三角形全等的概念理解应该不成问题,从整个初中学习过程中来说,三角形全等知识学习是学好其它几何知识的起步点,在八和九年级几何学习中都离不开三角形全等有关知识,如旋转、轴对称、园、坐标系等,但在学习中学生也存在两个主要问题。

〔1〕三角形全等的说理表达

逻辑语言表达这个过程的训练需要逐步进行,也就是题目要简单点,表达过程从两句即一个因果开始训练书写,再到两个因果训练,两个因果的书写过程时间要长一些,因为两个因果会写了,再多几个因果也不太会出问题了,当然在注意书写要求的同时还要强调理解逻辑关系

〔2〕几何逻辑思维能力培养

三角形全等知识在培养学生逻辑语言的同时,更重要的是在培养学生的逻辑思维能力、空间想象能力,在这一点上学生间的差异比拟明显,要缩小差距共同提高,培养的关键点是要让学生在头脑中逐渐有几何图形的图形感,能在大脑中思考几何图形中的问题,要做到这一点,第一步要让学生多用实物例子,多动手操作,多回忆见到过的类似图形,培养图形感,第二步要做到能在复杂图形中分解目标图形,学会动态思维,只有这样才能在复杂图形中捕捉、筛选目标图形,培养空间思维能力。

全等三角形教案5

教材分析:

《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》〔华师大版〕九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几局部内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过同学们画图、讨论、交流、比拟得出,注重同学们实际操作能力,为培养同学们参与意识和创新意识提供了时机。

设计理念:

针对教材内容和初三同学们的实际情况,组织同学们通过摆拼全等三角形和探求全等三角形的活动,让同学们感悟到图形全等与平移、旋转、对称之间的关系,并通过同学们动手操作,让同学们掌握全等三角形的一些根本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而到达会辨、会找、会用全等三角形知识的目的。

教学目标:

1、通过全等三角形的概念和识别方法的复习,让同学们体会区分、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养同学们观察和理解能力,几何语言的表达能力及运用全等知识解决实际问题的能力。

3、在同学们操作过程中,激发同学们学习的兴趣,培养同学们主动探索,敢于实践的精神,培养同学们之间合作交流的习惯。

教学的重点和难点:

重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

教学过程设计:

一、创设问题情境:

某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保存哪一块?〔教师用多媒体〕

师:请同学们先独立思考,然后小组交流意见

生:…………

师:上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。〔引出课题〕。

师:识别三角形及等的方法有哪些?

生:SAS、SSS、ASA、AAS、HL。

复习回忆:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,那么A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由〔〕

练习2、AB//DE,且AB=DE,

〔1〕请你只添加一个条件,使△ABC≌△DEF,

你添加的条件是

〔2〕添加条件后,证明△ABC≌△DEF?

[根据不同的添加条件,要求同学们能够表达三角形全等的条件和全等的现由,鼓励同学们大胆的表述意见]

二、探求新知:

师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?

请同组合作,交流,并把有代表性的摆放进行投影。

熟记全等三角形的根本形式,为探求全等三角形打下根底,提醒同学们注意两个全等三角形的对应边和对应角。同学们的摆放形式很多,包括那些平时数学成绩不好的同学们也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。

例1、如图一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。

〔1〕求证:AB⊥ED

〔2〕假设PB=BC,请找出右图中全等三角形,并给予证明。

用多媒体演示图形的变化过程。

师:图3中AB与ED有怎样的位置关系?同同学们猜测一下结果。

生甲:AB垂直ED

师:为什么?可以从几方面来考虑?

生乙:可以从图形运动变化的过程来考虑

生丙:可以考虑全等在条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

〔根据同学们的答复,教师板演〕

师:假设PB=BC,找出右图中全等三角形,看看谁能找得最快?

生丁:△PBD≌△CBA〔ASA〕

师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA〔ASA〕。

师:还有其他三角形全等吗?

生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

〔在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励同学们大胆的猜测,努力探求,在同学们的表达过程中,教师及时纠正同学们表达中的错误,训练同学们严谨的学习态度和学习习惯。〕

例2、〔动手画〕〔1〕OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。

教师在黑板上画好∠AOB和直线OP,同学们独立思考,然后请几个同学们在黑板上演示。

师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

〔2〕利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度

关系如何?

生:根本相等。

生:长度相等。

师:如何来证明他们相等?注意审题。

同学们先独立思考后,组内交流,等到有同学举手发言。

生:在AC上取点H,使AH=AE,那么△AEF≌△AHF那么EF=FH

师:为什么要这么做?你是怎么想到的?

生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

师:这样只能得到EF=FH。

生:再证明△FHC≌△FDC。

生:先求出AD、CE是角平分线∠APC=1200,那么∠DPC=∠EPA=∠APH=600,所以∠HPC=

∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP〔ASA〕所以PD=PH。

〔看清题意,猜测结果是解决探究题的重要环节,教师要留给同学们一定思考时间,同时鼓励同学们尝试和交流,鼓励同学们勇于探索以及同学之间的合作。〕

师生共同小结:

1、熟记全等三角形的根本形态,会找全等三角形的对应边和对应角。

2、在错综复杂的几何图形中能够寻找全等三角形。

3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

4、运用全等三角形的识别法可以解决很多生活实际问题。

作业:

1、在例2中,如果∠ACB不是直角,而〔1〕中的其他条件不变,请问:你在〔1〕中所得结论能成立吗?假设成立,请证明,假设不成立,请说明理由。

2、书本课后复习题

教学反思:

本教学设计从以下三方面考虑:

1、根据同学们的学习情况,改良同学们的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为同学们创设自主探索的气氛,让同学们真正成为课堂主体。

2、重视对同学们能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养同学们观察、操作、测试、思考的能力,同学们的活泼,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新

3、重视对同学们学习习惯的培养,全等三角形是几何局部内容说明书,有较强逻辑性,教师板演,以及在同学们表达中纠正同学们的错误,是培养同学们养成良好的习惯之一,同时同学们学习习惯多方面的,在合作交流中,培养同学们合作意识和合作习惯培养显得尤为重要。

全等三角形教案6

一、教材分析

本节课的教学内容是人教版数学八年级上册第十一章《全等三角形》的第一节.这是全章的开篇,也是全等条件的根底.它是继线段、角、相交线与平行线及三角形有关知识之后出现的通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好根底,具有承上启下的作用.

教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.

二、教学目标分析

知识与技能

1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.

2.能准确确定全等三角形的对应元素.

3.掌握全等三角形的性质.

过程与方法

1.通过找出全等三角形的对应元素,培养学生的识图能力.

2.能利用全等三角形的概念、性质解决简单的数学问题.

情感、态度与价值观

通过构建和谐的课堂教学气氛,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.

三、教学重点、难点

重点:全等三角形的概念、性质及对应元素确实定.

难点:全等三角形对应元素确实定.

四、学情分析

学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了开展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而到达对全等三角形的理性认识.

五、教法与学法

本节课坚持“教与学、知识与能力的辩证统一〞和“人人都能获得必需的数学〞的原那么,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜测和探究,促进学生自主学习,努力做到教与学的最优组合.

六、教学教程

Ⅰ.课题引入

1.电脑显示

问题:各组图形的形状与大小有什么特点?

一般学生都能发现这两个图形是完全重合的。

归纳:能够完全重合的两个图形叫做全等形。

2.学生动手操作

⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?

(学生分组讨论、提出方法、动手操作)

3.板书课题:全等三角形

定义:能够完全重合的两个三角形叫做全等三角形

“全等〞用“≌〞表示,读着“全等于〞

如图中的'两个三角形全等,记作:△ABC≌△DEF

Ⅱ.全等三角形中的对应元素

1.问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?

2.学生讨论、交流、归纳得出:

⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

Ⅲ.全等三角形的性质

1.观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边

有什么关系?对应角呢?

(引导学生从全等三角形可以完全重合出发找等量关系)

全等三角形的性质:

全等三角形的对应边相等.

全等三角形的对应角相等.

2.用几何语言表示全等三角形的性质

如图:∵ABC≌DEF

∴AB=DE,AC=DF,BC=EF

(全等三角形对应边相等)

∠A=∠D,∠B=∠E,∠C=∠F

(全等三角形对应角相等)

Ⅳ.探求全等三角形对应元素的找法

1.动画(几何画板)演示

(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?

归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.

(2).说出每个图中各对全等三角形的对应边、对应角

归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.

3.归纳:找对应元素的常用方法有两种:

(1)从运动角度看

a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.

b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

c.平移法:沿某一方向推移使两三角形重合来找对应元素.

(2)根据位置元素来推理

a.有公共边的,公共边是对应边;

b.有公共角的,公共角是对应角;

c.有对顶角的,对顶角是对应角;

d.两个全等三角形最大的边是对应边,最小的边也是对应边;

e.两个全等三角形最大的角是对应角,最小的角也是对应角;

Ⅴ.课堂练习

练习1.△ABD≌△ACE,假设∠B=25°,BD=6㎝,AD=4㎝,

你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么?

练习2.△ABC≌△FED

⑴写出图中相等的线段,相等的角;

⑵图中线段除相等外,还有什么关系吗?请与同伴交

流并写出来.

Ⅵ.小结

1.这节课你学会了什么?有哪些收获?有什么感受?

2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的

Ⅶ.作业

课本第92页1、2、3题

全等三角形教案7

1.定义:能够的两个三角形叫全等三角形。

2.全等三角形的性质,全等三角形的判定方法见下表。

一.挖掘“隐含条件〞判全等

如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)

1.如图AB=CD,AC=BD,那么△ABC≌△DCB吗?说说理由.

变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD

2.如图点D在AB上,点E在AC上,CD与BE相交于点O,

且AD=AE,AB=AC.假设∠B=20°,CD=5cm,那么∠CD的度数与BE的长。

3.如图假设OB=OD,∠A=∠C,假设AB=3cm,求CD的长。

变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD

二.添条件判全等

1.如图,AD平分∠BAC,要使△ABD≌△ACD,

根据“SAS〞需要添加条件;

根据“ASA〞需要添加条件;

根据“AAS〞需要添加条件.

2.AB//DE,且AB=DE,

(1)请你只添加一个条件,使△ABC≌△DEF,

你添加的条件是.

三.熟练转化“间接条件〞判全等

1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?

为什么?

2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?

3.“三月三,放风筝〞,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明.

稳固练习:如图,在中,,沿过点B的一条直线BE

折叠,使点C恰好落在AB变的中点D处,那么∠A的度数.

4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D

1.(20某某攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为全等三角形是△≌△

2.如图,AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE

3.如图,AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC

4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、N

(1)你能找到一对三角形的全等吗?并说明.

(2)BM,CN,MN之间有何关系?

假设将直线l旋转到如以下图的位置,其他条件不变,那么上题的结论是否依旧成立?

1.如图,要用“SAS〞说明ΔABC≌ΔADC,假设AB=AD,那么需要添加的条件是.

要用“ASA〞说明ΔABC≌ΔADC,假设∠ACB=∠ACD,那么需要添加的条件是.

2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,AD.CE交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.

(第3题)

(第4题)(第5题)(第6题)

3.如图,AD平分∠BAC,AB=AC,那么此图中全等三角形有()

A..2对B.3对C.4对D.5对

4.如图,ΔABC中,AB=AC,BE=EC,那么由“SSS〞可判定()

A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对

5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保存作图痕迹,不要求写作法和证明).

6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?

7:如图11-9在△ABC中.⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.

试说明:①CE=BG;②CE⊥BG;

⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.

试说明:①CD=BE;②求CD和BE所成的锐角的度数.

如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,假设AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?假设成立请给予证明;假设不成立请说明理由.

全等三角形教案8

课题:全等三角形

教学目标:

1、知识目标:

〔1〕知道什么是全等形、全等三角形及全等三角形的对应元素;

〔2〕知道全等三角形的性质,能用符号正确地表示两个三角形全等;

〔3〕能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

〔1〕通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

〔2〕通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

〔1〕通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

〔2〕通过自主学习的开展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

〔1〕动画〔几何画板〕显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

〔2〕学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

〔3〕获取概念

让学生用自己的语言表达:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

〔1〕电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用

〔1〕投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:此题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中别离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据的对应元素找:〔1〕全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边〔2〕全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法〞来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系〔同位角、内错角等〕,为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,

但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用的AD与BC求得。

说明:解决此题的关键是利用三角形全等的性质,得到对应边相等。

〔2〕题目的解决

这些题目给出以后,先要求学生独立思考后答复,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边〔或最大角〕是对应边〔或对应角〕,一对最短边〔或最小的角〕是对应边〔或对应角〕

4、课堂独立练习,稳固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角〔根本方法〕

(2)全等三角形的性质

(3)性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业〔中考题〕

思考题:

板书设计:

探究活动

〔2〕证明:AF∥DE

全等三角形教案9

教材分析

利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,开展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的根底上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下根底。

学情分析

学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用条件作三角形的根本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

教学目标

〔1〕学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

〔2〕掌握三角形全等的“边边边〞、“边角边〞、“角边角〞、“角角边〞的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

〔3〕培养学生的空间观念,推理能力,开展有条理地表达能力,积累数学活动经验。

教学重点和难点

重点:三角形全等条件的探索过程是本节课的重点。

从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以开展。

教学过程

一、回忆概念整合知识以提问的方式引出本节课的教学内容:

问题1通过调查你对商品的标价、售价、进价和利润、利润率这些概念清楚了吗?你能列出它们之间的关系式吗?

〔学生板书写出三个根本关系式〕

教师引导得出变形关系式:利润=进价某利润率.

设计意图通过调查使学生对商品销售过程所涉及的根本量、根本关系式有初步的了解,为后续的学习作好铺垫.

二、强化练习稳固概念

问题2运用根本关系式来做一组练习.

1.如果足球的进价是每个a元,超市按进价提高30%后标价,那么标价是多少元?

2.如果足球的进价是每个a元,标价是每个150元,现7折优惠,那么每个足球的利润是多少元?

3.如果足球的进价是每个a元,卖出后盈利25%,那么每个足球的利润是多少?

4.如果足球的进价是每个a元,卖出后亏损25%,那么每个足球的利润是多少?

设计意图通过题组练习使学生熟练掌握进价、标价、利润、利润率之间的关系,进而促使学生理解概念.

三、实践应用合作交流

问题3解决调查编写的商品销售方面的有关问题.

设计意图通过让学生编题互问互检,学生间的相互评价,拓展学生思维,给学生创造一个合作交流和表现发挥的舞台,让学生充分体验成功后的喜悦.

四、联系实际探究新知

问题4某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

教师在学生独立思考几分钟后让学生估算并简单说出估算的理由,估算对否不给予评判,告诉学生估算对不对还要进行计算.如何计算学生先独立思考,然后同桌交流,最后请一名同学到黑板板演利用一元一次方程解决此实际问题全部过程,其他同学在底下完成.完成后同学间相互评价.最后教师指出解决问题的关键——寻找等量关系,教师再进一步用估算方法分析亏损的原因.

设计意图在学生根本掌握解决有关商品销售问题的根底上对所学内容进行拓展,延伸.设计开放性问题的目的是通过此题的讲解使学生灵活运用本节的知识解决生活中的实际问题,也使全体学生在获得必要开展的前题下,不同的学生获得不同的体验.

五、稳固练习当堂反应

问题5假设某商品因库存积压,准备打折出售,如果按定价的7.5折出售将赔25元,而按定价的9折出售将赚20元.该商品定价是多少元?

〔同学们思考后各自独立完成,然后同学互判〕设计意图本节课对学生来说是一个难点,因此设计反应这一环节很有必要,便于教师掌握学生学习的情况.

六、布置作业课后延伸

设计意图加深学生对知识的稳固;是课堂教学内容的延

全等三角形教案10

教学建议

直角三角形全等的判定

知识结构

重点与难点分析:

本节课教学方法主要是“自学辅导与发现探究法〞。力求表达知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

〔1〕由“先教后学〞转向“先学后教

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,表达了以“学生为主体〞的教育思想。

〔2〕在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教法建议:

由“先教后学〞转向“先学后教〞

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,表达了以“学生为主体〞的教育思想。

〔2〕在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教学目标:

1、知识目标:

〔1〕掌握斜边、直角边画直角三角形的画图方法;

〔2〕掌握斜边、直角边公理;

〔3〕能够运用HL公理及其他三角形全等的判定方法进行证明和计算.

2、能力目标:

〔1〕通过尺规作图使学生得到技能的训练;

〔2〕通过公理的初步应用,初步培养学生的逻辑推理能力.

3、情感目标:

〔1〕在公理的形成过程中渗透:实验、观察、归纳;

〔2〕通过知识的纵横迁移感受数学的系统特征。

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:灵活应用五种方法〔SAS、ASA、AAS、SSS、HL〕来判定直角三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:判定三角形全等的方法有四种,假设这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?

这个问题让学生思考分析讨论后答复,教师补充完善。

2、公理的获得

让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。〔这里用尺规画图法〕

公理:有斜边和一条直角边对应相等的两个直角三角形全等。

应用格式:〔略〕

强调说明:

〔1〕、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

〔2〕、判定两个直角三角形全等的方法。

〔3〕特殊三角形研究思想。

3、公理的应用

(1)讲解例1〔投影例1〕

例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。

分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、求证后,再写出证明过程。

证明:〔略〕

(2)讲解例2。学生分析完成,教师注重完成后的点评。〕

例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.

求证:BE=CF

分析:BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF

证明:〔略〕

〔3〕讲解例3〔投影例3〕

例3:如图3,△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:

(1)BD=DE+CE

(2)假设直线AE绕A点旋转到图4位置时〔BD<CE〕,其余条件不变,问BD与DE、CE的关系如何,请证明;

(3)假设直线AE绕A点旋转到图5时〔BD>CE〕,其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明

学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。

4、课堂小结:

(1)判定直角三角形全等的方法:5个〔SAS、ASA、AAS、SSS、HL〕在这些方法的条件中都至少包含一条边。

(2)直角三角形判定方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

5、布置作业:

a、书面作业P79#7、9

b、上交作业P80#5、6

板书设计:

探究活动

直角形全等的判定

如图〔1〕A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,

假设AB=CD求证:BD平分EF。假设将△DEC的边EC沿AC方向移动变为如图〔2〕时,其余条件不变,上述结论是否成立,请说明理由。

全等三角形教案11

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养同学的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发同学热爱科学勇于探索的精神;

(2)通过自主学习的开展体验获取数学知识的感受,培养同学勇于创新,多方位审视问题的创造技巧。

教学重点:

全等三角形的性质。

教学难点:

找全等三角形的对应边、对应角

教学用具:

直尺、微机

教学方法:

自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般同学都能发现这两个三角形是完全重合的。

(2)同学自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让同学用自己的语言表达:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由同学观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用

(1)投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:此题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中别离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法〞来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,

但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用的AD与BC求得。

说明:解决此题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求同学独立思考后答复,其它同学补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角角)是对应边(或对应角)

4、课堂独立练习,稳固提高

此练习,主要加强同学的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(根本方法)

(2)全等三角形的性质

(3)性质的应用

让同学自由表述,其它同学补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P552、3、4

b.上交作业(中考题)

全等三角形教案12

1、知识与技能:

1.三角形全等的条件:角边角、角角边.

2.三角形全等条件小结.

3.掌握三角形全等的“角边角〞“角角边〞条件.

4.能运用全等三角形的条件,解决简单的推理证明问题.

2、过程与方法:

1.经历探究全等三角形条件的过程,进一步体会操作、?归纳获得数学规律的过程.

2.掌握三角形全等的“角边角〞“角角边〞条件.

3.能运用全等三角形的条件,解决简单的推理证明问题.

3、情感态度与价值观:

通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,开展实践能力和创新精神

提出问题,创设情境

复习:

(1)三角形中三个元素,包括哪几种情况?

三个角、三个边、两边一角、两角一边.

(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?

三种:

①定义;

②SSS;

③SAS.

2.[师]在三角形中,三个元素的四种情况中,我们研究了三种,今天我们接着探究两角一边是否可以判断两三角形全等呢?

导入新课

[师]三角形中两角一边有几种可能?

[生]1.两角和它们的夹边.

2.两角和其中一角的对边.

做一做:

三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比拟,观察它们是不是全等,你能得出什么规律?

学生活动:自己动手操作,然后与同伴交流,发现规律.

教师活动:检查指导,帮助有困难的同学.

活动结果展示:

以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.

提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角〞或“ASA〞).

[师]我们刚刚做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?

[生]能.

学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA〞的理解.

[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.

②画线段A′B′,使A′B′=AB.

③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.

④射线A′D与B′E交于一点,记为C′即可得到△A′B′C′.

将△A′B′C′与△ABC重叠,发现两三角形全等.

[师]

于是我们发现规律:

两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角〞或“ASA〞).

这又是一个判定三角形全等的条件.[生]在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA〞推出“两角和其中一角的对边对应相等的两三角形全等〞呢?

[师]你提出的问题很好.温故而知新嘛,请同学们来验证这种想法.

如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?

证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

∠A=∠D,∠B=∠E

∴∠A+∠B=∠D+∠E

∴∠C=∠F

在△ABC和△DEF中

∴△ABC≌△DEF(ASA).

于是得规律:

两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边〞或“AAS〞).

[例]如以下图,D在AB上,E在AC上,AB=AC,∠B=∠C.

求证:AD=AE.

[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.

学生写出证明过程.

证明:在△ADC和△AEB中

所以△ADC≌△AEB(ASA)

所以AD=AE.

[师]到此为止,在三角形中三个条件探索三角形全等问题已全部结束.请同学们把三角形全等的判定方法做一个小结.

学生活动:自我回忆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论