版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点2.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是A. B. C. D.3.下列运算中,正确的是().A. B. C. D.4.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.5.下列图形中既是轴对称图形又是中心对称图形的是()A. B.C. D.6.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B.π C. D.7.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽1.8米,最深处水深1.2米,则此输水管道的直径是()A.1.5 B.1 C.2 D.48.如图,A、B、C是⊙O上的三点,已知∠O=50°,则∠C的大小是()A.50° B.45° C.30° D.25°9.已知关于的一元二次方程有一个根为,则另一个根为()A. B. C. D.10.关于x的一元二次方程有实数根,则整数a的最大值是()A.2 B.1 C.0 D.-1二、填空题(每小题3分,共24分)11.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随即抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为_____.12.如图,在中,,是三角形的角平分线,如果,,那么点到直线的距离等于___________.13.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.14.在比例尺为1∶500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为_____km.15.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x,则列出方程是______________.16.某班从三名男生(含小强)和五名女生中,选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名,若男生小强参加是必然事件,则n=__________.17.分式方程=1的解为_____.18.如图,在Rt△ABC中,∠C=90°,CA=CB=1.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.三、解答题(共66分)19.(10分)已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.(1)求抛物线的解析式和,两点的坐标;(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由.20.(6分)如图,抛物线y=﹣x2+x+2与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)当点P在线段OB上运动时,直线1交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.21.(6分)随着技术的发展进步,某公司2018年采用的新型原料生产产品.这种新型原料的用量y(吨)与月份x之间的关系如图1所示,每吨新型原料所生产的产品的售价z(万元)与月份x之间的关系如图2所示.已知将每吨这种新型原料加工成的产品的成本为20万元.(1)求出该公司这种新型原料的用量y(吨)与月份x之间的函数关系式;(2)若该公司利用新型原料所生产的产品当月都全部销售,求哪个月利润最大,最大利润是多少?22.(8分)已知关于的一元二次方程有两个不相等的实数根(1)求的取值范围;(2)若为正整数,且该方程的根都是整数,求的值.23.(8分)如图,是规格为8×8的正方形网格,请在所给的网格中按下列要求操作.(1)在网格中建立平面直角坐标系,使点的坐标为,点的坐标为.(2)在第二象限内的格点上画一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数.求点的坐标及的周长(结果保留根号).(3)将绕点顺时针旋转90°后得到,以点为位似中心将放大,使放大前后的位似比为1:2,画出放大后的的图形.24.(8分)已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点(3,﹣3).(1)求抛物线的解析式及顶点A的坐标;(2)将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,如图,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.25.(10分)已知:关于x的方程(1)求证:m取任何值时,方程总有实根.(2)若二次函数的图像关于y轴对称.a、求二次函数的解析式b、已知一次函数,证明:在实数范围内,对于同一x值,这两个函数所对应的函数值均成立.(3)在(2)的条件下,若二次函数的象经过(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值均成立,求二次函数的解析式.26.(10分)如图,直线y=kx+b(b>0)与抛物线y=x2相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,于y轴相交于点C,设∆OCD的面积为S,且kS+8=0.(1)求b的值.(2)求证:点(y1,y2)在反比例函数y=的图像上.
参考答案一、选择题(每小题3分,共30分)1、D【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【详解】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知线段垂直平分线上的点到线段两个端点距离相等.2、B【解析】试题分析:∵由二次函数的图象知,a<1,>1,∴b>1.∴由b>1知,反比例函数的图象在一、三象限,排除C、D;由知a<1,一次函数的图象与y国轴的交点在x轴下方,排除A.故选B.3、C【解析】试题分析:3a和2b不是同类项,不能合并,A错误;和不是同类项,不能合并,B错误;,C正确;,D错误,故选C.考点:合并同类项.4、D【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是中心对称图形和轴对称图形的定义.5、B【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:B.【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的概念是解决此题的关键.6、D【解析】试题分析:根据弧长公式知:扇形的弧长为.故选D.考点:弧长公式.7、B【解析】试题分析:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×1.8=1.4米,设OA=r,则OD=r﹣DE=r﹣1.2,在Rt△OAD中,OA2=AD2+OD2,即r2=1.42+(r﹣1.2)2,解得r=1.5米,故此输水管道的直径=2r=2×1.5=1米.故选B.考点:垂径定理的应用.8、D【分析】直接根据圆周角定理即可得出结论.【详解】解:∵∠C与∠AOB是同弧所对的圆周角与圆心角,
∵∠AOB=2∠C=50°,
∴∠C=∠AOB=25°.
故选:D.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.9、B【分析】根据一元二次方程的根与系数的关系,x₁+x₂=,把x₁=1代入即可求出.【详解】解:方程有一个根是,另-一个根为,由根与系数关系,即即方程另一根是故选:.【点睛】本题考查了一元二次方程根与系数的关系的应用,还可根据一元二次方程根的定义先求出k的值,再解方程求另一根.10、C【分析】根据一元二次方程的根的判别式可得答案.【详解】解:∵关于x的一元二次方程有实数根,∴.即a的取值范围是且.∴整数a的最大值为0.故选C.【点睛】本题考查了一元二次方程,熟练掌握根的判别式与根的关系是解题关键.二、填空题(每小题3分,共24分)11、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及点(a,b)在第二象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图图得:∵共有6种等可能的结果,点(a,b)在第二象限的有2种情况,∴点(a,b)在第二象限的概率为:.故答案为:.【点睛】本题考查的是利用公式计算某个事件发生的概率,注意找全所有可能出现的结果数作分母.在判断某个事件A可能出现的结果数时,要注意审查关于事件A的说法,避免多数或少数.12、1【分析】作DE⊥AB于E,如图,利用勾股定理计算出BC=5,再根据角平分线的性质得DC=DE,然后利用面积法得到×5,从而可求出DE.【详解】作DE⊥AB于E,如图,
在Rt△ABC中,BC==5,
∵AD是三角形的角平分线,
∴DC=DE,
∵S△ACD+S△ABD=S△ABC,
∴×5,
∴DE=1,
即点D到直线AB的距离等于1.
故答案为1.【点睛】此题考查角平分线的性质,解题关键在于掌握角的平分线上的点到角的两边的距离相等.13、.【详解】连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB•tan∠ABH==1,∴EH=1,∴FH=,在Rt△FKH中,∠FKH=30°,∴KH=2FH=,∴AK=KH﹣AH==;故答案为.考点:旋转的性质.14、1【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,
∴A、B两地的实际距离3×500000=100000cm=1km,
故答案为1.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.15、=31.1【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.1故答案为:=31.1.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的.16、1;【解析】根据必然事件的定义可知三名男生都必须被选中,可得答案.【详解】解:∵男生小强参加是必然事件,∴三名男生都必须被选中,∴只选1名女生,故答案为1.【点睛】本题考查的是事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17、x=2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2+x﹣1=x2﹣1,即x2﹣x﹣2=0,分解因式得:(x﹣2)(x+1)=0,解得:x=2或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=2,故答案为:x=2【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.18、1【分析】三条弧与边AB所围成的阴影部分的面积=三角形的面积-三个小扇形的面积.【详解】解:阴影部分的面积为:1×1÷1---=1-.故答案为1-.【点睛】本题主要考查了扇形的面积计算,关键是理解阴影部分的面积=三角形的面积-三个小扇形的面积.三、解答题(共66分)19、(1)抛物线的解析式为:;点的坐标为,点的坐标为;(2)存在点,使四边形的面积最大;点的坐标为,四边形面积的最大值为32.【分析】(1)根据对称轴公式可以求出a,从而可得抛物线解析式,再解出抛物线解析式y=0是的两个根,即可得到A,B的坐标;(2)根据解析式可求出C点坐标,然后设直线的解析式为,从而可求该解析式方程,假设存在点,使四边形的面积最大,设点的坐标为,然后过点作轴,交直线于点,从而可求答案.【详解】解:(1)∵抛物线的对称轴是直线,∴,解得,∴抛物线的解析式为:.当时,,解得,,∴点的坐标为,点的坐标为.答:抛物线的解析式为:;点的坐标为,点的坐标为.(2)当时,,∴点的坐标为.设直线的解析式为,将,代入得,解得,∴直线的解析式为.假设存在点,使四边形的面积最大,设点的坐标为,如图所示,过点作轴,交直线于点,则点的坐标为,则,∴∴当时,四边形的面积最大,最大值是32∵,∴存在点,使得四边形的面积最大.答:存在点,使四边形的面积最大;点的坐标为,四边形面积的最大值为32.【点睛】本题考查的是一道综合题,考查的是二次函数与一次函数的综合问题,能够熟练掌握一次函数与二次函数的相关问题是解题的关键.20、(1)A(﹣1,0),B(4,0),C(0,2);(2)m=2时,四边形CQMD是平行四边形;(3)存在,点Q(3,2)或(﹣1,0).【分析】(1)令抛物线关系式中的x=0或y=0,分别求出y、x的值,进而求出与x轴,y轴的交点坐标;(2)用m表示出点Q,M的纵坐标,进而表示QM的长,使CD=QM,即可求出m的值;(3)分三种情况进行解答,即①∠MBQ=90°,②∠MQB=90°,③∠QMB=90°分别画出相应图形进行解答.【详解】解:(1)抛物线y=﹣x2+x+2,当x=0时,y=2,因此点C(0,2),当y=0时,即:﹣x2+x+2=0,解得x1=4,x2=﹣1,因此点A(﹣1,0),B(4,0),故:A(﹣1,0),B(4,0),C(0,2);(2)∵点D与点C关于x轴对称,∴点D(0,﹣2),CD=4,设直线BD的关系式为y=kx+b,把D(0,﹣2),B(4,0)代入得,,解得,k=,b=﹣2,∴直线BD的关系式为y=x﹣2设M(m,m﹣2),Q(m,﹣m2+m+2),∴QM=﹣m2+m+2﹣m+2)=﹣m2+m+4,当QM=CD时,四边形CQMD是平行四边形;∴﹣m2+m+4=4,解得m1=0(舍去),m2=2,答:m=2时,四边形CQMD是平行四边形;(3)在Rt△BOD中,OD=2,OB=4,因此OB=2OD,①若∠MBQ=90°时,如图1所示,当△QBM∽△BOD时,QP=2PB,设点P的横坐标为x,则QP=﹣x2+x+2,PB=4﹣x,于是﹣x2+x+2=2(4﹣x),解得,x1=3,x2=4(舍去),当x=3时,PB=4﹣3=1,∴PQ=2PB=2,∴点Q的坐标为(3,2);②若∠MQB=90°时,如图2所示,此时点P、Q与点A重合,∴Q(﹣1,0);③由于点M在直线BD上,因此∠QMB≠90°,这种情况不存在△QBM∽△BOD.综上所述,点P在线段AB上运动过程中,存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似,点Q(3,2)或(﹣1,0).【点睛】本题考查的是动态几何中的相似三角形问题.考查的知识点有二次函数的性质、平行四边形的判定、两点间的距离公式、相似三角形的判定,利用二次函数性质设Q的坐标是解题关键.注意要考虑全各种情况,不要漏解.21、(1);(2)四月份利润最大,最大为1920元【分析】(1)根据图象利用待定系数法确定函数的解析式即可;(2)配方后确定最值即可.【详解】解:(1)1﹣6月份是一次函数,设y=kx+b,把点(1,50),(6,100)代入,得:,解得:,∴;(2)设利润为w元,当7≤x≤12时,w=100×35=3500元.当1≤x≤6时,w=(x﹣20)y=﹣30x2+240x+1440=﹣30(x﹣4)2+1920,故当x=4时,w取得最大值1920,即四月份利润最大,最大为1920元.【点睛】本题考查了二次函数的实际问题中最大利润问题,解题的关键是求出函数解析式,熟悉二次函数的性质.22、(1)k<(1)1【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.(1)找出k范围中的整数解确定出k的值,经检验即可得到满足题意k的值.【详解】解:(1)∵关于的一元二次方程有两个不相等的实数根,∴.解得:k<.(1)∵k为k<的正整数,∴k=1或1.当k=1时,方程为,两根为,非整数,不合题意;当k=1时,方程为,两根为或,都是整数,符合题意.∴k的值为1.23、(1)图见解析;(2),周长为;(3)图见解析.【分析】(1)根据平面直角坐标系点的特征作图即可得出答案;(2)根据等腰三角形的定义计算即可得出答案;(3)根据旋转和位似的性质即可得出答案.【详解】解:(1)如图所示:(2)∵,∴∴周长为;(3)如图所示,即为所求.【点睛】本题考查的是尺规作图,涉及到了两点间的距离公式以及位似的相关性质,需要熟练掌握.24、(1)y=﹣x2+2x,顶点A的坐标是(1,1);(2)CD长为定值.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得顶点坐标;(2)根据平移规律,可设出新抛物线解析式,联立抛物线与直线OA,可得C、D点的横坐标,根据勾股定理,可得答案.【详解】解:(1)把(3,﹣3)代入y=﹣x2+mx+m-2得:﹣3=﹣32+3m+m-2,解得m=2,∴y=﹣x2+2x,∴y=﹣x2+2x=﹣(x-1)2+1,∴顶点A的坐标是(1,1);(2)易得直线OA的解析式为y=x,平移后抛物线顶点在直线OA上,设平移后顶点为(a,a),∴可设新的抛物线解析式为y=﹣(x﹣a)2+a,联立解得:x1=a,x2=a﹣1,∴C(a-1,a-1),D(a,a),即C、D两点间的横坐标的差为1,纵坐标的差也为1,∴CD=∴CD长为定值.【点睛】本题考查了二次函数综合题,利用待定系数法求函数解析式,再利用解析式确定顶点坐标;根据平移规律确定抛物线解析式,通过联立解析式确定交点坐标,利用勾股定理求解.25、(1)证明见解析;(2)a、y1=x2-1;b、证明见解析;(3).【解析】(1)首先此题的方程并没有明确是一次方程还是二次方程,所以要分类讨论:①m=0,此时方程为一元一次方程,经计算可知一定有实数根;②m≠0,此时方程为二元一次方程,可表示出方程的根的判别式,然后结合非负数的性质进行证明.(2)①由于抛物线的图象关于y轴对称,那么抛物线的一次项系数必为0,可据此求出m的值,从而确定函数的解析式;②此题可用作差法求解,令y1-y2,然后综合运用完全平方式和非负数的性质进行证明.(3)根据②的结论,易知y1、y2的交点为(1,0),由于y1≥y3≥y2成立,即三个函数都交于(1,0),结合点(-5,0)的坐标,可用a表示出y3的函数解析式;已知y3≥y2,可用作差法求解,令y=y3-y2,可得到y的表达式,由于y3≥y2,所以y≥0,可据此求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借壳上市交易合同交易安排
- 2024年劳务派遣协议(乙方版)
- 2024年安全生产目标管理责任协议书
- 音乐表演合作协议
- 2024年全新房屋租赁经纪合同
- 2024年婚姻终止协议及赔偿条款
- 2024年实习保密协议文本
- 合资体育协议
- 2024年CIF销售合同中英文本
- 2024年养殖业供需双方饲料购销合同
- 河北省邯郸市思想政治高一上学期2024-2025学年测试试题及答案解析
- 2004年三中会议精神测试题及答案
- 2024年浙江省应急管理行政执法竞赛题库-上(单选、多选题)
- 【2013浙G32】机械连接竹节桩图集
- 安全生产法律法规清单2024.07
- 人教版高中化学选择性必修1第2章化学反应速率与化学平衡测试含答案
- 《食品添加剂应用技术》第二版 课件 任务3.1 防腐剂的使用
- 高三一模“人生需要学会绕行”审题立意及范文(彩色高效版)
- 2024年国家能源投资集团有限责任公司校园招聘考试试题及参考答案
- 2023-2024学年江苏省南京玄武区中考语文最后一模试卷含解析
- 糖皮质激素的合理应用课件
评论
0/150
提交评论