版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter2
Discrete-timeSystemsAnalysisDiscrete-timesystemsTheoryofthez-transformSignalsamplingandreconstructionPulsetransferfunctionofsampled-datasystemsStability,transientresponseandsteady-stateerrorWhatisadiscretetimesystem?Theyaresystemsinwhichtheinputsandoutputsaredescribedbydiscretesamplesintimedomain.DiscreteTimeSystemukykkykkdenotesthesamplinginstantattimet=kTsInputsandoutputsarenotcontinuousintimebutinsteadaresampledatt=kTswhereTsisthesamplinginterval.Samplingfrequency=1/TsHzor2p/Tsrad/s.ContinuoustimeDiscretesampleskuk123Discrete-TimeSystemsADiscrete-TimeSystemtransformsdiscrete-timeinputstodiscrete-timeoutputs.Theoutputataparticulartimeindexdependsonboththeinputatspecificindexvaluesandoutputvaluesatpreviousindices.Incontrasttoacontinuous-timesystemwhoseoperationisdescribed(ormodeled)byasetofdifferentialequation,adiscrete-timesystemcanbedescribedbyasetofdifferenceequations(差分方程).Howdoyoudescribetheinput-outputbehaviorofdiscretetimesystems?DosowithdifferenceequationsinsteadofdifferentialequationsExamplesofdifferenceequations(DE)1storderDE:2ndorderDE:3rdorderDE:Comparewithordinarydifferentialequations(ODE)1storderODE:2ndorderODE:ConvertingODEstodifferenceequationsApproximatebyHence,1storderODEwillleadto1storderdifferenceeqns2ndorderODEwillleadto2ndorderdifferenceeqnsThus,easytoseehowcontinuoustimesystemscanbeconvertedintoapproximatediscretetimemodels.TransformMethodsInlineartime-invariant(LTI)continuous-timesystems,theLaplacetransform
canbeusedinsystemanalysisanddesign.Inlineartime-invariantdiscrete-timesystems,thez-transform
isutilizedintheanalysisofthesystemdescribedbydifferenceequations.Whatisz-transform?SignalSampling
x(t)
载波器脉冲调制器x*(t)
x(t)tx*(t)tx(t)x*(t)SSamplingSwitchTheL-transformofx*(t):=1+e-Ts+e-2Ts+…Example:Unitstepsignalx(t)=1(t).Transcendentalfunction!X(z)iscalledthez-transformofdiscretesignalx*(t).Sincex*(t)
isasampledseriesfromthesignalx(t),wemayalsosayX(z)isthez-transformofx(t).Hencethefollowingnotation:LeteTs=z,thenInsomecases,x(kT)iswrittensimplyasx(k).
TheUnilateralZtransform
(单侧z变换)Incontrolsystemsanalysis,weusetheunilateralztransform.Justifiedbecauseincontrolsystems,weonlydealwithsignalsthatarecausal.2….k10Duetotheinfinitesum,convergenceisanimportantissue.Ideally,theregionofconvergence(ROC)shouldbestated.ROCreferstotheregiononthecomplexplaneonwhichthetransformexistsBilateralzTransforms
(双侧z变换)
Givenasamplesequence,{…x(-2),x(-1),x(0),x(1),x(2),…},wedefinethebilateralZ-transformasExample:UnitImpulseThediscreteversionofanunitimpulse(withdelay),d(t-t0),isdefinedtobeBydefinitionofthez-transform:Ifk0=0,D(z)=1!Example:impulseseries
Example:UnitStep2….k10AstepsequenceRegionofconvergenceis|z|>1.Poleatz=12….k10a<12….k10a>1Regionofconvergenceis|z|>aPoleatz=aWhatdoesthistellsusabouttherelationshipbetweenstabilityandpoles?Powerseries2….k10arampsequenceHowtoshowthis?Forunit-stepsignal:Multiplybothsideswith
(-Tz),andobtainthez-transformofunitrampfunction:Takederivativewithrespecttoz:Proof:Example:Exponentialfunction(指数函数)
x(t)=e-at(a:constantparameter〕
Thisisageometricserieswithacommonratioof(e-aTz-1)
,When|e-aTz-1
|<1,thisseriesisconvergentandcanbewritteninclosedformasfollows:Example:Sinusoidalsignal(正弦信号)
x(t)=sintPropertiesofz-transformLinearity:IfX(z)=Z[x(t)],Then
RealTranslation(TimeShift,实数位移定理)实数位移定理若
X(z)=Z[x(t)],则Proof:假定k<0时x(kT)=0ykk0123456...yk-2k0123456...shiftsequence{yk}sequence{yk-2}AppearslikeadelayedsequenceIfZ{yk}=Y(z),thenZ{yk-2}=z-2Y(z)Example:x(t)=t2,solveforX(z).Solution:x(t)=t2,x(0)=0。
x(t+T)=(t+T)2=t2+2Tt+T2
x(t+T)-x(t)=T(2t+T)Takingz-transform:Bytimeshift:
ComplexTranslation(复平移定理)Ifx(t)
X(z),then
Example:,X(z)=?
DifferentiationLaw(z域微分定理
)Example:x(t)=t3,findX(z).Proof:Ifx(t)
X(z),thenExample:,X(z)=?Solution:Bytimeshift:Consider{x(k)}asasampledseriesfromsignalx(t)=tat-1
withT=1andApplythedifferentiationlaw:Ifx
(n)
X(z),then
Z[anx(n)]=X(z/a),a:constant.
ScalingTheorem
(z域尺度定理)Solution:
Example:
Findthez-transformof
InitialValueTheorem
(初值定理)Proof:Bythedefinitionofz-transform:FinalValueTheorem(终值定理)Proof:Bythedefinitionofz-transform:andBytimeshift:FinalValueTheoremGiventheLaplaceTransform,X(s)ofsignalx(t),thefinalvalueisgivenbyGiventhedefinitionoftheztransform,X(z)ofasequence,Inbothcases,weassumethatthesignalisstable.Thediscreteconvolutionoftwosampledsequencesx(nT)andy(nT)
isdefinedas
,then:
Z[x(nT)*y(nT)]=X(z)Y(z)
ConvolutionofTimeSequence(离散卷积定理
)Proof:Letn-k=m,thenm=-kwhenn=0.Substituten=m+kintoEqn(1)
:Usefulz-transformpairsBypartialfractionexpansion:TakinginverseL-transform:Takingz-transform:Example:thecasewhenthesignalisgivenbyitsL-transform.InverseztransformGivenX(z),whatisthesequencex(k)?Powerseriesexpansion(幂级数法)longdivisiontoobtainsequencePartialfractionexpansion(部分分式展开法,又称查表法)makesuseofknownz-transformpairstofindtheclosedforminversesolutionInversetransformintegral(反演积分法、留数法)makesuseofResiduecalculus
Powerseriesexpansion(幂级数法)
X(z)canbewrittenasarationalfunction:
Usinglongdivision(综合除法)toobtainasequence
:kckTx=)(Thenbydefinition:
)=?()(kxazzzX,+=Solution:Example:Example:Given,Findthecorrespondingsignalx*(t).Solution:(2)Partialfractionexpansion
(部分分式展开法,又称查表法)DecomposeX(z)intoPartialfractionexpansionandthenmakeuseofknownz-transformpairstofindtheclosedforminversesolution.Example:Given,x(kT)=?Solution:Example:
Given,finditsinverseztransform.
Solution:FirstdecomposeX(z)/zintopartfractionexpansionx(nT)=(-1+2n)10
x*(t)=x(0)(t)+x(T)(t-T)+x(2T)(t-2T)+…
=0+10(t-T)+30(t-2T)+70(t-3T)+…
Fromthelook-uptable:=x(0)+x(T)z-1+x(2T)z-2+…
Multiplybothsideswithzk-1:X(z)zk-1=x(0)zk-1+x(T)zk-2
+…+x(kT)z-1+…
TheaboveisaLaurentseries,andx(kT)isthecoefficientofz-1.Applyingtherelevanttheoremintheoryofcomplexvariables:
(3)Inversetransformintegral(反演积分法、留数法)WhereCisaclosedcontourintheROCofX(z).
ByCauchyintegraltheorem:
wherezi
isthepoleofX(z)zk-1insidecontourC.ResiduecalculusIfhasapolewithmultiplicityr,andanother(m-r)polesatdifferentlocations,thenSolution:Example:Given,Findthecorrespondingsignalx*(t).SolutiontoDifferenceEquation
—Numericalsolution:
SequentialProcedure(迭代法):computetheD.E.recursivelyfromsomeinitialvalues.usedincomputersolutionofD.E.—Analyticalsolution:1.assumingsomeformforthesolutionwithunknownconstantsandsolvefortheconstantstomatchtheinitialconditions.2.usingz-transformThez-transformApproach(z变换法)
Determinethez-transformoftheD.E.usingtherealtranslationproperty;SolvethealgebraicequationforY(z);Obtainthesolutionofy(k)bytakingtheinversez-transform.Example:FindthesolutiontothefollowingD.E.y(0)=-1Solution:Takingthez-transformonbothsidesofD.E.Fromthelook-uptable,wehaveDiscreteTransferFunctionConsiderafirstorderdifferenceequationisgivenby:TakingZ-transformsonbothsides:a,bareconstantsTransferfunctioninz-domain!Poleatz=aFora2ndorderdifferenceequation:TakingZ-transformsonbothsides:Polesatz=-1,-2
ukykWhatistheunitstepresponseofthisdiscretetimesystem?Z.T.NotetheneedtosetzasideTakinginversez-transform:Thez-transformoftheoutput:fork=0,1,2,3,4,…Outputsequence:Outputsamplesgettinglargerforlargek.Thereforesystemisunstable!DoesnotgetlargerwithkDoesnotgetlargerwithk
GrowslargerwithkRecallthatthepolesareatz=-1and-2.Henceweconcludethatpoleswithmagnitudes|z|>1leadtounstablesystems!Poleswithmagnitudes|z|<1arestable.SignalSamplingandReconstructionSignalSampling
x(t)x*(t)SSamplingSwitch(a)
tx(t)(b)tx*(t)Obviously,isaperiodicfunction,hencecanbeexpandedintoFourierseries:whereisthesamplingfrequency.
HenceTakingLaplacetransformandusingcomplextranslationtheorem:Itsspectrum(频谱)canbegivenby--X(j)00--(a)
Spectrumofx(t).(b)Spectrumof
x*(t)(>2)
Ideallow-passfilterSpectrumpreserved,Signalx(t)canberecoveredAliasing(混叠):ωs
<2ωmaxSpectrumoverlap,Signaldistorted,Cannotberecovered.NyquistSamplingTheorem(采样定理)NyquistSamplingTheorem:Onecanrecoverasignalfromitssamplesifthesamplingfrequency(ωs
=2π/T)isatleast
twicethehighestfrequency(ωmax
)inthesignal,i.e.,Putinanotherway:Foragivensamplingfrequencyωs,onlywhenthehighestfrequency(ωmax
)ofthesignalisnolargerthanhalfofsamplingfrequency(ωs)canwerecoverthesignalwithoutanydistortion,i.e.,NyquistfrequencyIdeallow-passfilter-IdealReconstructionofSignalAfterfiltering:Impulseresponse:Noncausal!Cannotbeimplementedphysically.t/T123-1-2-3Signal
Reconstruction:
apolynomialextrapolationapproach.
UsingaTaylor’sseriesexpansionaboutt=nT,Wedefineasthereconstructedversionofx(t).Suchamechanismiscalleddatahold,andxh(t)istheoutputofthedatahold.
IfonlythefirsttermoftheTaylor’sseriesisused,thedataholdiscalleda
zero-orderhold(零阶保持器),i.e.,IfthefirsttwotermsoftheTaylor’sseriesareused,itisthefirst-orderhold(一阶保持器),i.e.,Weapproximatethederivativesbybackwarddifference.Zero-OrderHold(ZOH,零阶保持器)ZOHisthemostcommonlyuseddatahold,itmaintainsthesampledvalueforthewholesamplingperiod,andoutputastaircasesignal.xh(t)x*(t)x*(t)t
ZOHxh(t)tTakingLaplacetransform:
HencethetransferfunctionofZOHisgivenbyThenSamplingandHoldxh(t)Gh(s)x*(t)x(t)Sampler
DataHoldForZOH:FrequencyresponseofZOHAmplitude:Phase:FrequencyresponseofZOHTHighfrequencycomponentsareattenuated,butcannotbetotallyerased;PhasedelayrelatedtoT.First-OrderHold(FOH,
一阶保持器)0T2T3T…..Itsfrequencyresponse:ThetransferfunctionofFOHisgivenbywhereFrequencyresponseofFOHConclusion:FOHisnotbetterthanZOH.FOHZOHPulsetransferfunction
(脉冲传递函数)1.
OpenloopPulsetransferfunction
G(s)r*(t)
r(t)y*(t)
y(t)Pulsetransferfunction(ztransferfunction,discretetransferfunction)isdefinedastheratioofthez-transformofoutputy*(t),
orY(z),tothatofinputr*(t),orR(z),i.e.,H(z)=Y(z)/R(z).Anycontinuous-timesignalr(t)sampledbyanidealsamplerwithperiodTwillproduceatrainofpulsesignalas:If
isinputintoG(s),Iftheinputis,Assumingthatthecontinuousoutputc(t)isalsosampledbyanidealsamplerasthatofinput,thentheoutputsampleatt=nT
isBythetheoremofdiscreteconvolution:G(z)=Z[G(s)]GenerallyG(z)
canbewrittenas:Caution:G(z)isdeterminedbythestructureandparametersofthediscretesystem,andisindependentofthereferenceinput.Example:findtheztransferfunctionforthesystemwiththefollowingstransferfunction:Solution:Example:determinethepulsetransferfunctionforthefollowingopen-loopsampled-datasystem:r*(t)
r(t)y*(t)y(t)Solution:PulsetransferfunctionofcascadedsystemsCase1:NosamplerbetweentwocascadedsubsystemsG1(s)G2(s)
r*(t)
r(t)y*(t)y(t)TheblockdiagramcanbereducedtoG1(s)G2(s)
r*(t)
r(t)y*(t)y(t)ThenLetCase2:Thereisasamplerbetweentwocascadedsubsystems,andsamplersaresynchronized.
y*(t)y(t)G1(s)G2(s)
r*(t)
r(t)y1*(t)Case3:OpenloopsystemprecededbyaZOH.Gp(s)
r*(t)
r(t)y*(t)y(t)3.Pulsetransferfunctionofclosed-loopdiscretesystemsy*(t)G1(s)G2(s)H(s)r(t)
e(t)e*(t)
d(t)
b(t)
y(t)-++Figure:LineardiscretesystemwithdisturbanceByassumingd(t)=0,thediagramcanbereducedto:
Figure:LineardiscretesystemBythedefinitionofpulsetransferfunction:G1(s)G2(s)H(s)r(t)
e*(t)
y*(t)y(t)b(t)DefinetheerrorpulsetransferfunctionGe(z)
as:Hencetheclosed-looppulsetransferfunctionGB(z)isgivenbyNowassumer(t)=0,andobtainthefollowingdiagramwithdisturbanceasanequivalentinput:G2(s)G1(s)H(s)r(t)=0
e*(t)
y*(t)-y(t)
d(t)++Figure:Lineardiscretesystemwithdisturbanceasinput.Example:Considerthefollowingsampled-datasystem:G(s)H(s)
r(t)b*(t)y*(t)y(t)-
AnalysisofDiscreteSystemsTransientresponseStabilitySteady-stateerror1.
Transientresponse
Closed-looptransferfunctionofatypicaldiscretesystem:N(z)andD(z)aremonicpolynomialofz.TheunitstepresponseisgivenbyBypartialfractionexpansion:where(1)pkisreal:Casea:pk=1,yk(n)isaconstantsequence.Theoutputseries:Caseb:0<pk<1,decayinggeometricsequenceCasec:pk>1,expandinggeometricsequence.Casee:-1<pk<0,decayinggeometricsequencewithalternatingsigns.
Cased:pk=-1,alternatingsequence.
Casef:pk<-1,expandinggeometricsequencewithalternatingsigns.
Summary:transientresponsewith
asinglerealpolepkImRe[Z]
f
f
d
daa
c
c
b
bee(2)
pkisconjugatecomplex(inpairs)Then,ckandck+1formaconjugatepair:
Themagnitudeofpole,|pk|,willdeterminewhethertheresponseisconvergentordivergent.Thetransientresponse:Casea:|pk|<1,dampedsinusoidalsequenceCaseb:|pk|=1,sinusoidalsequenceCasec:|pk|>1,exponentiallyexpandingsinusoidalsequenceAlargermeansfasteroscillationinthetransientresponse.Let
θk=ωdT,then
istheoscillatingfrequencyoftheresponse,andtheperiodofoscillation
isgivenbyTheimpactoftheargument(3).Deadbeatsystem(有限时间响应系统)
Whenalltheclosed-looppolesareattheorigin,thetransientresponsewillsettledownwithinlimitedperiods.Suchasystemiscalleddeadbeatsystem.Theunitimpulseresponse:Thetransientprocesswilldieoutafternperiods.Thispropertyisneverfoundinacontinuous-timesystem.Averyimportantqualitativepropertyofadynamicsystemisstability.Internalstabilityisconcernedwiththeresponsesatalltheinternalvariables.Externalstabilityisconcernedwiththeinput-outputrelation.ThemostcommondefinitionofappropriateresponseisthatforeveryBoundedInput,weshouldhaveaBoundedOutput.i.e.,wecallthesystemBIBOstable.2.StabilityAnalysis
LinearDiscreteSystem:G(s)
r(t)
y*(t)y(t)_
Ifallclosed-looppolesofasystemisinsidetheunitcircle,thesystemisstable.Ifatleastonepoleisonoroutsidetheunitcircle,thecorrespondingsystemisnotBIBOstable.1+G(z)=0Thestabilityboundaryofdiscrete-timesystems(inthe
z-plane)isdifferentfromthatofcontinuoussystems(inthes-plane).Howdoesthishappen?Considerthefollowingmapping(fromstoz):
z
=eTs
Foranypointinthes-plane:s=σ+jω,thenaftermapping,thepointinz-planeis:
case1:σ=0,theimaginaryaxisins-planeismappedintotheunitcircleinz-plane–stabilityboundary.
case2:σ<0,theLHPofs-planeismappedintotheinterioroftheunitcircleinz-plane–stabilityregion.
case3:σ>0,theRHPofs-planeismappedintotheexterioroftheunitcircleinz-plane–instabilityregion.s=σ+jωReReImImMappingthes-planeintoz-planes-planez-planes=σ+jωWaystocheckstabilityDirectcalculation:forsimplecases;Bilineartransform+Routhtest;Jury’stest:similartoHurwitztestincontinuous-timecase.Otherways:rootlocus,Nyquiststabilitycriterion,Lyapunovtheorem,etc.Solution:
TheopenlooppulsetranserfunctionisExample:Checkthestabilityofthefollowingsampled-datasystemwithT=1s.
r(t)y*(t)
y(t)1+G(z)=0z2+4.952z+0.368=0z1=-0.076z2=-4.876Thereisonepoleoutsidetheunitcircle,hencethe
systemisunstable.Theclosed-loopC.E.isgivenby
Define(1)Thetwocomplexvariableszandwcanbewrittenasz=x+jyw=u+jv(2)(3)Substitute(2)and(3)into(1):Bilineartransform+RouthtestthenBilineartransform,w-transformCase1:x2+y2=1,theunitcircleinz-plane,
u=0theimaginaryaxisinw-plane.Case2:x2+y2<1,theinteriorofunitcircleinz-plane,
u<0thelefthalfofw-plane.Case3:x2+y2>1,theexteriorofunitcircleinz-plane,
u>0therighthalfofw-plane.z=x+jyw=u+jvForDiscrete-timesystems:polesareinsideunitcircle(zplane)?Stability?ForContinuous-timesystems:polesareonthelefthalfplane(wdomain)?BilineartransformRouthtest
Givenasampled-datasystemwithT=1s.
Checkitsstabilityforthecasewhen
K=10,andfindthecriticalgainK.Example:Solution:⑴Theclosed-loopCEis:
z2+2.31z+3=0Bymanualcalculation:
1=-1.156+j1.292=-1.156-j1.29Bothpolesareoutsidetheunitcircle,hencethesystemisunstable.
C(s)R(s)
—Open-looppulseTF:when
K=10,theclosed-loopTF:CE:1+G(z)=0
z2-(1.368-0.368K)z+(0.368+0.264K)=0⑵Openlooppulsetransferfunction:Thecriticalvalueofgain
Kis:
Kc=2.4Routharray:
w20.632K2.736-0.104K
w11.264-0.528K0
w02.736-0.104K
Forstability,weneedAfterw-transform:
0.632Kw2+(1.264-0.528K)w+(2.736-0.104K)=00<K<2.4StabilityConditions
for2ndordermonicC.E.CE:f(z)=z2+az+b=0Sufficient&NecessaryConditionsforStability:f(1)>0f(-1)>0|f(0)|<13.Steady-stateerrorindiscrete-timesystemsConsideradiscrete-timesystemwithunitfeedback:G(s)
r(t)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版四年级上册教案
- 假牙套市场需求与消费特点分析
- 升降机操作装置产业运行及前景预测报告
- 寿司手工制作器产业深度调研及未来发展现状趋势
- 人教版英语八年级上册期末语法复习
- 制造罐头食品行业经营分析报告
- 剃须后用面霜产业运行及前景预测报告
- 化妆用维生素A乳霜市场发展预测和趋势分析
- 健身踏板产业链招商引资的调研报告
- 食品配送企业卫生管理体系方案
- 单人心肺复苏操作评分标准
- 前庭康复-医学课件
- 胆囊切除术术后健康饮食宣教
- 学生安全指南-预防、识别和应对危险
- 难治性抑郁症的治疗及护理
- 智能林业装备与技术
- 安徽省芜湖市2023-2024学年七年级上学期期中数学试卷
- 降低非计划重返手术率PDCA
- 幼儿园教师如何说课
- 心理健康八年级(全一册)第六课+说“不”其实很容易
- 矿产资源-三率-指标要求+第13部分:粘土矿产
评论
0/150
提交评论