上海市闵行区21学校2022-2023学年数学九年级上册期末检测试题含解析_第1页
上海市闵行区21学校2022-2023学年数学九年级上册期末检测试题含解析_第2页
上海市闵行区21学校2022-2023学年数学九年级上册期末检测试题含解析_第3页
上海市闵行区21学校2022-2023学年数学九年级上册期末检测试题含解析_第4页
上海市闵行区21学校2022-2023学年数学九年级上册期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一元二次方程的常数项是()A.﹣4 B.﹣3 C.1 D.22.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.3.寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为()A. B. C. D.4.已知一次函数和二次函数部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…当y2>y1时,自变量x的取值范围是A.-1<x<2 B.4<x<5 C.x<-1或x>5 D.x<-1或x>45.在圆内接四边形中,与的比为,则的度数为()A. B. C. D.6.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5077.抛物线y=(x+1)2+2的顶点()A.(﹣1,2)B.(2,1)C.(1,2)D.(﹣1,﹣2)8.已知点A(﹣3,a),B(﹣2,b),C(1,c)均在抛物线y=3(x+2)2+k上,则a,b,c的大小关系是()A.c<a<b B.a<c<b C.b<a<c D.b<c<a9.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. B.1 C. D.10.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为()A. B. C. D.11.方程的根是()A.-1 B.0 C.-1和2 D.1和212.关于的一元二次方程x2﹣2+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣2二、填空题(每题4分,共24分)13.如图,是的中线,点是线段上的一点,且,交于点.若,则_________.14.计算的结果是_______.15.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为_____.16.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.1.其中正确的结论是_____.(把你认为正确结论的序号都填上)17.菱形ABCD中,若周长是20cm,对角线AC=6cm,则对角线BD=_____cm.18.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0, 3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP20.(8分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.21.(8分)已知函数解析式为y=(m-2)(1)若函数为正比例函数,试说明函数y随x增大而减小(2)若函数为二次函数,写出函数解析式,并写出开口方向(3)若函数为反比例函数,写出函数解析式,并说明函数在第几象限22.(10分)某区为创建《国家义务教育优质均衡发展区》,自2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同(1)求这两年该区投入教育经费的年平均增长率(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元23.(10分)数学活动课上老师带领全班学生测量旗杆高度.如图垂直于地面的旗杆顶端A垂下一根绳子.小明同学将绳子拉直钉在地上,绳子末端恰好在点C处且测得旗杆顶端A的仰角为75°;小亮同学接着拿起绳子末端向前至D处,拉直绳子,此时测得绳子末端E距离地面1.5m且与旗杆顶端A的仰角为60°根据两位同学的测量数据,求旗杆AB的高度.(参考数据:sin75°≈0.97,cos75°≈0.26,sin60°≈0.87,结果精确到1米)24.(10分)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.25.(12分)若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.26.某商城某专卖店销售每件成本为40元的商品,从销售情况中随机抽取一些情况制成统计表如下:(假设当天定的售价是不变的,且每天销售情况均服从这种规律)每件销售价(元)506070758085……每天售出件数30024018015012090……(1)观察这些数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式;(2)该店原有两名营业员,但当每天售出量超过168件时,则必须增派一名营业员才能保证营业,设营业员每人每天工资为40元,求每件产品定价多少元,才能使纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其他开支不计).

参考答案一、选择题(每题4分,共48分)1、A【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)中a、b、c分别是二次项系数、一次项系数、常数项.【详解】解:一元二次方程的常数项是﹣4,故选A.【点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a、b、c分别叫二次项系数,一次项系数,常数项.2、B【分析】画出树状图,根据概率公式即可求得结果.【详解】画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选:B.【点睛】本题考查随机事件的概率计算,关键是要熟练应用树状图,属基础题.3、B【解析】由小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,直接利用概率公式求解即可求得答案.【详解】解:∵小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,

∴小明选择到甲社区参加实践活动的可能性为:.

故选:B.【点睛】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4、D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(1,5),-1<x<1时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=1时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(1,5),而-1<x<1时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>1.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.5、C【分析】根据圆内接四边形对角互补的性质即可求得.【详解】∵在圆内接四边形ABCD中,:=3:2,∴∠B:∠D=3:2,∵∠B+∠D=180°,∴∠B=180°×=.故选C.【点睛】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.6、B【分析】根据年利润平均增长率,列出变化增长前后的关系方程式进行求解.【详解】设这两年的年利润平均增长率为x,列方程为:300(1+x)2=507.故选B.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是怎么利用年利润平均增长率列式计算.7、A【解析】由抛物线顶点坐标公式[]y=a(x﹣h)2+k中顶点坐标为(h,k)]进行求解.【详解】解:∵y=(x+1)2+2,∴抛物线顶点坐标为(﹣1,2),故选:A.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为直线x=h.8、C【分析】通过确定A、B、C三个点和函数对称轴的距离,确定对应y轴的大小.【详解】解:函数的对称轴为:x=﹣2,a=3>0,故开口向上,x=1比x=﹣3离对称轴远,故c最大,b为函数最小值,故选:C.【点睛】本题主要考查了二次函数的性质,能根据题意,巧妙地利用性质进行解题是解此题的关键9、B【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.10、A【分析】列举出所有情况,看两位数中是奇数的情况占总情况的多少即可.【详解】解:在0,1,2三个数中任取两个,组成两位数有:12,10,21,20四个,是奇数只有21,所以组成的两位数中是奇数的概率为.故选A.【点睛】数目较少,可用列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11、C【分析】用因式分解法课求得【详解】解:,,解得故选C【点睛】本题考查了用因式分解求一元二次方程.12、A【分析】关于x的一元二次方程x²+2x+k=0有两个相等的实数根,可知其判别式为0,据此列出关于k的不等式,解答即可.【详解】根据一元二次方程根与判别式的关系,要使得x2﹣2+k=0有两个相等实根,只需要△=(-2)²-4k=0,解得k=1.故本题正确答案为A.【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.二、填空题(每题4分,共24分)13、【分析】过点A作AG∥BC交CF的延长线于G,根据平行即可证出△AGE∽△DCE,△AGF∽△BCF,列出比例式,根据已知条件即可求出AB.【详解】解:过点A作AG∥BC交CF的延长线于G,如下图所示∴△AGE∽△DCE,△AGF∽△BCF∴,∵∴∴∵是的中线,∴∴∴解得:cm∴AB=AF+BF=1cm故答案为:1.【点睛】此题考查的是相似三角形的判定及性质,掌握构造相似三角形的方法是解决此题的关键.14、【分析】根据分式的加减运算法则,先通分,再加减.【详解】解:原式====.故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序.15、1【分析】连接OC,根据反比例函数的几何意义,求出△BCO面积即可解决问题.【详解】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=1,故答案为:1.【点睛】本题考查反比例函数、切线的性质等知识,解题的关键是理解S△BCO=,属于中考常考题型.16、①、②、④.【分析】①先利用等腰三角形的性质可得一组角相等,又因有一组公共角,所以由三角形相似的判定定理即可得;②根据为等腰三角形,加上、AB的值可得出底边CD的值,从而可找到两个三角形有一组相等的边,在加上①中两组相等的角,即可证明全等;③因只已知为直角三角形,所以要分两种情况考虑,利用三角形相似可得为直角三角形,再结合的值即可求得BD;④设,则,由∽得,从而可得出含x的等式,化简分析即可得.【详解】①(等边对等角)又∽,所以①正确;②作于H,如图在中,又由等腰三角形三线合一性质得,当时,则又在和中,,所以②正确;③为直角三角形,有两种情况:当时,如图1∽在中,可解得当时,如图2在中,可解得综上或,所以③不正确;④设,则由∽得,即故,所以④正确.综上,正确的结论有①②④.【点睛】本题考查了等腰三角形的定义和性质、三角形全等的判定、相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.17、1【分析】先根据周长求出菱形的边长,再根据菱形的对角线互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【详解】解:如图,∵菱形ABCD的周长是20cm,对角线AC=6cm,∴AB=20÷4=5cm,AO=AC=3cm,又∵AC⊥BD,∴BO==4cm,∴BD=2BO=1cm.故答案为:1.【点睛】本题考查了菱形的性质,属于简单题,熟悉菱形对角线互相垂直且平分是解题关键.18、3【分析】利用60°余弦值可求得OB的长,作AD⊥OB于点D,利用60°的正弦值可求得AD长,利用60°余弦值可求得BD长,OB-BD即为点A的横坐标,那么k等于点A的横纵坐标的积.【详解】解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴BD=AB×sin60°=,AD=AB×cos60°=1,∴OD=OA﹣AD=3,∴点B的坐标为(3,),∵B是双曲线y=上一点,∴k=xy=3.故答案为:3.【点睛】本题考查了解直角三角形,反比例函数图像上点的坐标特征,解决本题的关键是利用相应的特殊的三角函数值得到点B的坐标;反比例函数的比例系数等于在它上面的点的横纵坐标的积.三、解答题(共78分)19、DP=23,点D的坐标为【分析】根据等边三角形的每一个角都是60°可得∠OAB=60°,然后根据对应边的夹角∠OAB为旋转角求出∠PAD=60°,再判断出△APD是等边三角形,根据等边三角形的三条边都相等可得DP=AP,根据,∠OAB的平分线交x轴于点P,∠OAP=30°,利用三角函数求出AP,从而得到DP,再求出∠OAD=90°,然后写出点D的坐标即可.【详解】∵△AOB是等边三角形,∴∠OAB=60∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,∴旋转角=∠OAB=∠PAD=60∘,∴△APD是等边三角形,∴DP=AP,∠PAD=60∵A的坐标是(0, 3),∠OAB的平分线交x轴于点P,∴∠OAP=30∘,∴DP=AP=23∵∠OAP=30∘,∴∠OAD=30∴点D的坐标为(23【点睛】本题考查了坐标与图形的变化,解题的关键是熟练的掌握坐标与图形的变化的相关知识点.20、(1)证明见解析;(2)DE与⊙O相切;(3)【分析】(1)连接AD,根据等腰三角形三线合一性质得到AD⊥BC,再根据90°的圆周角所对的弦为直径即可证得AB是⊙O的直径;(2)DE与圆O相切,理由为:连接OD,利用中位线定理得到OD∥AC,利用两直线平行内错角相等得到∠ODE为直角,再由OD为半径,即可得证;(3)由AB=AC,且∠BAC=60°,得到DABC为等边三角形,连接BF,DE为DCBF中位线,求出BF的长,即可确定出DE的长.【详解】解:(1)证明:连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为⊙O的直径;(2)DE与⊙O相切,理由为:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为⊙O的半径,∴DE与⊙O相切;(3)解:连接BF,∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,∵AB为⊙O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC中点,∴E为CF中点,DE=BF,在Rt△ABF中,∠AFB=90°,AB=6,AF=3,∴BF=,则DE=BF=.【点睛】本题考查圆;等腰三角形;平行线的性质.21、(1)详见解析;(2)y=-4x2,开口向下;(3)y=-x-1或y=-3x-1,函数在二四象限【分析】(1)根据正比例函数的定义求出m,再确定m-2的正负,即可确定增减性;(2)根据二次函数的定义求出m,再确定m-2的值,即可确定函数解析式和开口方向;(3)由题意可得-2=-1,求出m即可确定函数解析式和图像所在象限.【详解】解:(1)若为正比例函数则-2=1,m=±,∴m-2<0,函数y随x增大而减小;(2)若函数为二次函数,-2=2且m-2≠0,∴m=-2,函数解析式为y=-4x2,开口向下(3)若函数为反比例函数,-2=-1,m=±1,m-2<0,解析式为y=-x-1或y=-3x-1,函数在二四象限【点睛】本题考查了正比例、二次函数、反比例函数的定义,理解各种函数的定义及其内涵是解答本题的关键.22、(1)20%;(2)15552万元【分析】(1)设该县投入教育经费的年平均增长率为,根据题意列式计算即可;(2)由(1)可知增长率,列式计算即可.【详解】解:(1)设该县投入教育经费的年平均增长率为,根据题得,解得(舍去)答:该县投入教育经费的年平均增长率为20%(2)因为2018年该县投入教育经费为12960万元,由(1)可知增长率为20%,所以2019年该县投入教育经费为万元答:预算2019年该县投入教育经费15552万元【点睛】本题考查的是一元二次方程的实际应用,能够读懂题意列式计算是解题的关键.23、15米.【分析】根据题意分别表示出AB、AF的长,进而得出等式求出答案.【详解】过E作EF⊥AB于F,设AC=AE=∵AB⊥CD,ED⊥CD,∴四边形FBDE为矩形,∴,在中∵,∴,∴AB=AF+BF,在中,∵,∴,∴,,∴(米).∴旗杆AB的高度为米.【点睛】本题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.24、(1)故答案为100,30;(2)见解析;(3)0.1.【解析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.【详解】解:(1),所以样本容量为100;B组的人数为,所以,则;故答案为,;(2)补全频数分布直方图为:(3)样本中身高低于的人数为,样本中身高低于的频率为,所以估计从该地随机抽取名学生,估计这名学生身高低于的概率为.【点睛】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.25、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根据正方形的性质得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根据弧长的计算公式和扇形的面积公式即可得到结论;(Ⅱ)连接BC′,根据题意得到B在对角线AC′上,根据勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到结论;(Ⅲ)如图1,连接DB,AC相交于点O,则O是DB的中点,根据三角形中位线定理得到FO=AB′=1,推出F在以O为圆心,1为半径的圆上运动,于是得到结论.【详解】解:(Ⅰ)∵四边形ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论