




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五节第二型曲面积分一、有向曲面二、第二型曲面积分的概念与性质三、第二型曲面积分的计算法四、两类曲面积分之间的联系有两侧的曲面.(1)双侧曲面1.曲面的分类法向量的方向来区分曲面的两侧.规定一、有向曲面(2)单侧曲面莫比乌斯(Mobius)带.B、C粘在一起形成的环不通过边界可以这在双侧曲面上是不能实现的.它是由一张长方形纸条ABCD,扭转一下,将A、D粘在一起,行带.小毛虫在莫比乌斯带上,爬到任何一点去.Mobius(1790--1868)19世纪德国数学家观察以下曲面的侧曲面分上侧和下侧曲面分内侧和外侧2.有向曲面
通常光滑曲面都有两侧.(假设曲面是光滑的)有向曲面.决定了侧的曲面称为3.有向曲面在坐标面上的投影设Σ是有向曲面.恰好等于与坐标面xOy的二面角.
假定的余弦上各点处的法向量与z轴的夹角有相同的符号.
在有向曲面取一小块
类似地,可定义在yOz面及zOx面的投影:在xOy面上的投影在xOy面上的投影区域的面积附以一定的实际上就是正负号.的二面角.流向曲面一侧的流量.流量实例(为平面A的单位法向量)(斜柱体体积)(1)流速场为常向量有向平面区域
A,求单位时间流过A的流体的质量(假定密度为1).引例
流体的密度与速度均不随时间而变化(2)
设稳定流动的不可压缩流体给出,函数(假定密度为1)的速度场由当不是常量,曲面求在单位时间内流向指定侧的流体的质量是速度场中的一片有向曲面,
分割则该点流速为,法向量为求和取近似高底通过Σ流向指定侧的流量取极限1.定义二、第二型曲面积分概念与性质定义有向曲面元2.性质(1)(2)(3)
当曲面Σ(4)为母线平行于z轴的柱面时,表示Σ相反的一侧上侧,三、对第二型曲面积分的计算法设积分曲面Σ是由的曲面Σ在xOy面上的投影区域为函数具有一阶连续偏导数,被积函数R(x,y,z)在Σ上连续.对坐标的曲面积分,必须注意曲面所取的侧.注
计算对坐标的曲面积分时:(1)认定对哪两个坐标的积分,将曲面Σ表为这两个变量的函数,并确定Σ的投影域.(2)将Σ
的方程代入被积函数,化为投影域上的二重积分.(3)根据Σ的侧(法向量的方向)确定二重积分前的正负号.解投影域
例1计算其中Σ是球面外侧在的部分.
例2其中Σ是所围成的正方体的表面的Σ2Σ4Σ5Σ6Σ3
先计算由于平面都是母线平行于x轴的柱面,则在其上对坐标y,z的积分为0.解三个坐标面与平面外侧.Σ1x=a面在yOz面上的投影为正,而x=0面在yOz面上的投影为负.投影域均为:0≤y≤a,0≤z≤a,故由x,y,z的对等性知,所求曲面积分为3a4.后两个积分值也等于a4.Σ2Σ4Σ5Σ6Σ3Σ1四、两类曲面积分之间的联系其中是有向曲面Σ在点处的法向量的方向余弦.两类曲面积分之间的联系不论哪一侧都成立.解
例3下侧.
例其中Σ解法一直接用对坐标的曲面积分计算法.且其投影区域分别为由于Σ取上侧,在第一卦限部分的上侧.面的投影都是正的,取上侧法二利用两类曲面积分的联系计算.Σ取上侧,锐角.则法向量n与z轴正向的夹角为若分片光滑的闭曲面Σ0其中注补充x的偶函数x的奇函数曲面Σ不封闭也可以.取外侧(内侧仍成立),那末关于yOz平面对称,
例4其中Σ:解关于yOz面对称,被积函数关于x为偶函数.下侧.关于zOx面对称,被积函数关于y为偶函数.
原式=解求练习而思考题思考题解答因为上半球面下半球面故关于曲面侧的性质小结
对坐标的曲面积分的计算
对坐标的曲面积分的概念四步:分割、取近似、求和、取极限思想:化为二重积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 不动产权证书办理协议
- 海外二手车采购协议
- 合同终止的法律协商
- 怎样制作炫酷的创新创业项目
- 怎样预防春季疾病
- 辛集中学高二历史限时训练PDF版含答案
- 阳泉职业技术学院《铁路运输服务礼仪》2023-2024学年第二学期期末试卷
- 陇南师范高等专科学校《文学文本分析与应用》2023-2024学年第一学期期末试卷
- 陕西国际商贸学院《文学概论(I)》2023-2024学年第二学期期末试卷
- 陕西工业职业技术学院《应用有机化学》2023-2024学年第二学期期末试卷
- 金融数学基础课件
- 区域轨道交通协同运输与服务应用体系及实践
- 酒体设计课件
- 贪心算法 思政案例
- 危岩稳定性计算表格-滑移式-倾倒式-坠落式-完整版
- 油库消防课件
- (完整word版)英语国际音标表(48个)打印版
- 领导力的文化建设
- 2023年08月中国林业科学研究院公开招聘(7人)笔试历年高频考点试题含答案带详解
- 小学校务监督委员会工作方案
- 水培吊兰的方法与养护管理要点
评论
0/150
提交评论