




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
YongxinpetrochemicalindustryProjectoftreating100,000tonsofcarbon4ComprehensiveUtilizationPlantperCE-FLAMEteam,Shen Member:HanYingnanPatrick.ChowLiZhengyuZero.HouEdwardInstructor:LiuDongbinSunHuaiyuFanLihuiZhangLiShenYanmingProject ProcessSelectionand selectionofprocesstechnical AutomatedControl Siteselectionand site site Plant 6.Economic Table6.1maintechnicalandeconomic ThisprojectisdesignedforQing YongxinPetrochemicalCo.,.todealwith100,000tonsofcarbonf comprehensiveutilizationofthepreparationofp-tertDingJibenzoicacidandp-tertDingJibenzoatemethylesterdevice.Theplantcomprehensivelyusescarbon4fractionsandotherrawmaterialsinthemainplanttoprocesscarbon4resourcesthroughrecoveryofbutadiene,selectivehydrogenation.ProcessSelectionandselectionofprocesstechnicalButadieneisasyntheticrubber,themainrawmaterialofABSresin.SeparationandpurificationofbutadienefromcrackedcarbonFourhas ethemostimportantproductionmethodofbutadieneintheworldtoday.Thecarbonfourcomponentsobtainedbytheoilrefiningunitaredifferentfromeachother,sothelatetreatmentprocessisalsodifferent.Thecontentof1,3-butadieneproducedbypyrolysisCarbonFourcanbeashighas49.4%,theproductionofhighpurity1,3-butadieneisrealizedbysolventextractionandrecovery,thecontentofwhichisabout0.004%,tomeettherequirementsofdownstreamprocessMTBE.AndthecarbonffromtheFCC1,3-butadienecontentcanbeaslowas0.23%,becauseButadieneiseasilypolymerizedinthereactionofproducingMTBE,thepolymersformedareusuallythepoisonsoftheetherificationcatalysts,reducingthelifeofthecatalyst,andthepresenceof1,3-fortheseparationof1-butene,Theboilingpointofthetwoisonlydifference1.6c°,itisdifficulttoachieveseparationbyphysicalmethod,soitisveryimportanttodealwiththelowcontent1,3-butadiene. Thisprojectistreatedbyselectivehydrogenationtechnology.Therawmaterialcontainsonly1.9%butadiene0.02%acetyleneand0.2%butadiene.Butadienerecoveryisnotonlyhighcost,butalsolessbutadienecontent,sothehydrogenationprocessissuperior.Insaturatedhydrogenationandselectivehydrogenation,saturatedhydrogenationmeansthelossofvaluableolefinresources,whichisnotconducivetothedevelopmentofdownstreamproducts.Therefore,butadieneandbutadieneinfeedstockweretransformedinto-butenewithhighutilizationvaluebyselectivehydrogenationprocess,whileethylenewasremovedbyselectivehydrogenationofacetylene.Thedesiredreactionisdiolefin,hydrogenationofalkynes,asfollows:CH2=CH-CH=CH2+ CH≡CH+H2 CH3-CH2-C≡CH+ CH3-CH2-Intheprocessofselectivehydrogenation,butene1isomerizationintobutene2sidereaction,therateofthisreactionismuchlowerthanthatofbutadieneandalkyneshydrogenation,onlywhenthehydrogenationofbutadieneisnearcomplete,thesidereactionbeginstooccur.Thereactionisasfollows:CH2=CH-CH2- CH3-CH=CH-Theselectivehydrogenationcankeepthecontentof1butadieneatIsobutenepreparationofisobutenesectionbyMTBEcrackingisanimportantchemicalrawmaterial,mainlyfrom crackingandcarbonfourfractionincatalyticcrackingproducts.Inaddition,tertbutylalcoholdehydration,isobutanedehydrogenation,MTBEcrackingareoftenused.Whenusedaschemicalproductssuchassyntheticbutylrubber,polyisobutylene,andotherchemicalproducts,therequirementsforitspurityareequivalent.Itneedsalotofcomplicatedseparationprocess,acidextraction,adsorptionseparationandsoon.Amongthem,themethodofMTBEcrackingtoisobutenehasthecharacteristicsofsmallpollution,highpurity,highsinglepassconversionrateandstrongindependence.Upto2016,therewere24productionenterprisesinChina.HighpurityisobutenewasproducedbyMTBEAccordingtotheliteraturedata,theconversionrateofMTBEcanreach99.6241.6°~0.15bar,and99.9%forhighpurityisobuteneafterTable2.12016majorhighpurityisobuteneproduction产万吨/采用的工艺 公司名称产万吨/采用的工艺1浙江新辉材料82盘锦和运7异丁烷脱3扬子-巴斯夫公64山东滨州裕华化工厂65宁波昊德化学工56中信国安化工(菏泽57山东玉皇化工48山东齐旺达49化工燕山山东东营仕通化工3苏州宏伟实业3山东东营市齐发化工3淄博齐翔石油化工2山东滨州顺东化工公2山东滨州利美化2山东成泰化工2湖南岳阳兴2吉林锦江油化吉林精细化学品潍坊滨海石油化工洛阳炼化宏力化工杭州顺1锦州精细化工公梅山化工厂(曙光控股子公司兰州合syntheticprocessofp-tertDingJibenzoicSolvent-freeliquidphaseP-tertDingJibenzoicacid(PTBBA)wassynthesizedbysolvent-freeliquidphaseoxidationwithp-tertDingJitoluene(PTBT)asrawmaterialandaceticaciddrillascatalyst.Using40%acetaldehydeasinitiator,theinductionperiodcanbeshortenedobviously,theoptimumreactiontemperatureis170℃,theyieldof100minis50andtheselectivityis98.Theorderofreactionisorderat170℃,andtherateofoxidationisonlyrelatedtotheconcentrationof100min.solventliquidphaseWithp-tertDingJitolueneasrawmaterial,aceticaciddrillingascatalyst,aceticacidassolvent,250mLstainlesssteelautoclavewithmechanicalstirring,airinletandoutletforproducttestingarearrangedatthebottom.Thereactionisself-linked,andthereactionmechanismisasfollows:Comparedwithaceticacidsolvent,theliquidphaseaceticacidsolventoxidationmethodisusedtosynthesizePTBTs.Theadvantageofaceticacidisth eticacidcanimprovethesolubilityofthecatalystanddissolvethehighboilingpointPTBTproducts.Preventtheproductfromprecipitatingathighconcentration.Therefore,aceticacidwasselectedasthesolventforthesynthesisprocess.TheprocessflowchartisasFigure2.2fullprocesssimulationMixedC_4wasselectedtoremovebutadiene,alkynes,excesshydrogenanduncondensedgasasfuelgas,methanolandcarbon_4wereetherifiedtoprepareMTBEs,excessivemethanolwasrecovered,extractionwaterwasrecycled,andhighpurity1-butenewasproducedbyC_4afterether.ThepurityofMTBEwas98.9%toproducehighpurityisobutene,andhighpurityisobuteneandtoluenetoproducep-tertDingJitoluene,whichwasusedasrawmaterialforthesynthesisofp-tertDingJibenzoicacid.Methanolwasrecycledforesterificationofmethylp-tertDingJiEnergy-savingdesignandHeatpumpdistillationFigure3.1T-H(beforeFromthecombinationcurve,wecanseethatthereisa"thermalplatform"causedbylatentheatofvaporizationonbothsidesofthepinchpoint,whiakestheprocessrecoverableheatisverysmall.Ifthevaporizationtemperatureofthematerialischangedtochangethetemperaturepotentialofthethermalplatform,thetwoplatformscanbestaggeredtorecovermoreheat.Theheatpumpdistillationtechnologycanbeusedtorealizeeffectiveenergyrecoveryandenergysavingbychangingthecombinedcurvethermalplatform.Throughysis,itcanbeseenthatpartofthethermalplatformiscausedbythetopcondenserandbottomreboilerof1-butenedistillationcolumn(T-0202),andenergyconsumptionofthecolumnisThetemperatureof1-buteneconventionaldistillationtower(T-0202)is43.1°Catthetopand54.7°Catthebottom.Thetemperaturedifferencebetweenthetopandbottomofthecolumnissmall,whieetstherequirementofheatpumprectification.Soitissuggestedthattheheatpumprectificationtechnologyshouldbeinstalledtorecoverenergytosolvetheproblemoflargeenergyconsumption.Fig.3.2resultsofconventionaldistillationUsingthecompressortoraisethetemperatureofthetopgasofthetowerbyoneenergylevel,sothattheenergycanbedtothegasificationofthebottommaterialandthewholeprocesssimulationofAspenisshowninfigure(4-8).Fig.3.3HeatpumpdistillationInconventionaldistillationcolumn(T-0202),theheatloadoftopcondenserandbottomreboileris-6786.5KW,6666.46kW,486.2kW,336.85kWand887.941KWrespectively.Theenergyconsumptionoftopcompressorofheatpumpdistillationtoweris486.2kW,theheatloadofauxiliaryreboileris336.85kW,andtheheatloadofcondenseris-887.941KW.Themechanicalenergyandelectricenergyarethehighervalueenergyformofspecificheatenergy,theelectrothermalconversioncoefficientisabout3.2,sotheheatconsumptionofheatpumprectificationis888.01KW,andthecoolingconsumptionis-335.389KW.Saveheatengineering88.3,savecoldutilityTable3.4EnergySavingofHeatpumpalheatThermalColdOptimizationofHeattransferThisprojectusesthetechnologyofheatintegrationandenergysavingandthesoftwareofAspenEnergy yzerV8.8torealizethedesignofheattransfernetworkwithlargeenergyreuse.Theoptimizedheattransfernetworkdiagramwedesignedisasfollows:Fig.6.1finalheattransferscheme(noheatpumprectification)Bydesigningtheprocessheattransfernetworkafterpyrolysisandcombiningwiththeformerheattransfernetwork,thetotalrequiredthermalengineeringare13802kW,thecoldutilityis16169.7KW,thethermalutilityenergyrecovery25.5andthecoldutilityenergyrecoveryisFigure3.4optimalheattransfertemperatureHeatpumpdistillationwasdesignedforconventionaldistillation(T-0202),andmostoftheenergywasrecovered.ThefullflowheattransfernetworkdiagramforaddingheatpumpsisshownFigure3.5Finalheattransferscheme(withheatpumpThecoldutilityusedinthisprojectis:circulatingcoolingwater.Thethermalutilityusedislowpressure at1:170℃andhighpressure 310℃.Publicworkscanbeprovidedbytheplantpublicworksstation.Table6.1detailsofpublicworksforthisProcessschemetechnology1technologyIndustrialproductionofMTBEismainlycausedbymethanolandisobuteneinthecatalysisofacidiccatalystsaftertheetherificationreaction,thereactionequationisasfollows:ThecatalystmodelselectedinthisprojectistheD-006typecatalystwhichiswidelyusedinindustry,thecatalystisthelargeporestrongacidiccationexchangeresinofthepolystyrenestructureofsulfonatedethylene-biphenyl,anditisknownfromtheliteraturethatthecatalystissusceptibletothefollowingexternalconditions:1.catalystholesIftheparentchannelofthecatalystisblocked,thereactionmaterialwillnotbeabletoenterthechannelandcontactwithitsactivecenterforchemicalreaction.Thissituationismainlyduetothehighcontentofbutadieneintherawmaterials.whenthetemperatureistoohigh,butadienewillundergoself-polymerizationreactionandblockthecatalystchannels. 2.cationexceedsAccordingtotheresearchand ysisofdeactivatedcatalystbycatalystmanufacturers,thedeactivationofcationiccatalystaccountsfor60%ofthetotal,whichisoneofthemainreasonsforcatalystdeactivation.Becausecationsdisplacehydrogenionsinthecatalyst,theacidityoftheresincannotbereleasedandthusitscatalyticeffectcannotbeexerted. 3.RawmaterialsC4andmethanolbothcontaintraceamountsofsaturatedwater,whichoftencontainsmoremetalcations.watercangeneratetertiarybutanolbysidereactionwithisobutylene,andcanhydrolyzeanddesulfurizewithcatalyticresin,thusinactivatingtheresin.4.influenceofDuetodifferencesinthemanufacturingprocessandvariousrawmaterials,someproductsareacidicandsomeareweaklyalkaline.Ifitisweaklyacidic,ithasnoeffectonetherificationreactionandcatalyst.Ifitisalkalescent,itwillcausepoisoningofacidiccatalyst4.1.2ThetechnologicalinnovationthesourceofthisprocessisthesameastheFCCdevice,butthe1,3-butadieneisreducedtothefollowingstandardbyselectivehydrogenation.Therefore,thecauseofdeactivationofcatalystismainlytheaminecontentmentionedintheliteratureandtheexcessivemetalcation.Combinedwiththeprocessandcharacteristicsoftheprocess,carbonfourrawmaterialsbeforeenteringtheetherChemicalsectionisaselectivehydrogenationprocess,intheselectionofhydrogenationreactorusedinthehydrogenationcatalystforthePd/al2o3series,thecatalystisalsosusceptibletoalkalinesubstancesandmetalionslossofactivity.Consideringthecharacteristicsofthesetwocatalysts,thecatalystpoisonshouldhavebeenremovedpriortocontactwiththecatalyst,sofortheselectionofhydrogenationreactortomakethefollowingimprovements,carbonfourrawmaterialsfromthebottomintothereactor contactwiththeadsorbent,thatis,underthecatalystBedSetprotectiveagentbedlayer,asshowninthefigure.Themaincomponentsoftheaddedprotectiveagentaresilica-aluminumcompounds,highporosity,Gongjon,suitablespecificsurfacearea,effectiveadsorptionofamineandalkalinesubstancesinrawmaterials.Thiscannotonlyprotectthehydrogenationcatalyst,butalsoprolongtheusetimeoftheetherificationcatalyst,andreducethetwoamineremovalequipment,whichhastheadvantagesofsimpleflow.Onthebasisofthisimprovement,theMTBEsynthesisreactorstillusesthecontrollableproductionprocessasshowninthefigurebelow.ProductstructureLog-Butylbenzoicacidistheoutputproductincrystalform,andthedownstreamproductionisalsoincrystalsolidform,sowecancontrolthestart-uptimeofp-tert-butylbenzoicacidesterificationreactor,therebycontrollingtheproductionofmethyltert-butylbenzoate,productstructurediversification,to izeprofits,toobtainmore.Goodeconomicbenefits.equipmentcolumnThetraditionalpackingtoweradopt ichring,Bauerringandsoon.ThestructureoftheRasichringisrelativelysimple,whichwillleadtoseriouswallflowandditchflowinthetower,andthendecreasethemasstransferefficiency.TheBauerringisanimprovementontheLaceyring,butthemechanicalstrengthisslightlylower.Forthisprocess,theseparationof1-butenerequireshighefficiency,resultinginthehighheightofthepackedtower,thereisacertainsafetyrisk,soourteamuseourschoolZhangLiteachertoleadthedevelopmentanddesignofthefour-leaffiller,Thisnewtypeofswirlpackingcaneffectivelyremovethewallflowanddrainretentionoffluidinthetower,improvetheeffectofmasstransferbetweenphases,andreducethepressuredropmoreeffectively.Fig.4.2comparisonofmasstransfercoefficient fig.4.3comparisonofpressuredropbetweenbetweenfourleafpackingandLaceyring; fourleafpackingandLaceyringFig.4.4ComparativediagramofHETPchangesbetweenfour-leafpackingandLaceyringpackingwithfixedliquidflowrateItcanbeseenfromtheexperimentaldatathatthepressuredropandmasstransfercoefficientratioofthefour-leafregularpackingarehigherthanthatoftheLaceyringpacking,andtheHETPisalsoobviouslydecreased.Onthebasisoftheexperimentaldata,theFluentsoftwareisusedtosimulatetheflowfield. ly,themodelisbuiltandmeshedbyGambit,andintroducedintoFluent.Thek-wmodel,theEulertwo-phaseflowmodelandtheporousmediamodelareusedtosimulatetheflowfield.Thesimulationresultsareasfollows Fig.4.5pressureclouddiagramofgas- Fig.4.6Four-leafpackinggas-two-phaseflowwithfour-leafpackino-phaseliquidphasevelocityclouddiagramAftercalculatingbyFluent,thepressuredropdataareprocessed,andtheresultsobtainedbyOriginarecomparedwiththoseobtainedbyTheexperimentalresultsarecomparedwitheachother,asshownintheFig.4.7comparisonofexperimentalandsimulateddataofgas-liquidtwo-phaseflowthroughfour-leafpackingItcanbeseenfromthediagramthattheerrorbetweenthesimulatedvalueandtheexperimentalvalueissmaller,whichprovestheaccuracyandreliabilityofthesimulationprocessandverifiesthecorrectnessofsolvingthecoefficient.Thesimulationmethodcanbeusedasatheoreticalbasisforindustrialamplificationinthefuture.Four-leafstructuredpackinghasthecharacteristicsofhighmasstransferefficiency,smallpressuredropandsmallequivalentplatespacing,andeffectivelysolvestheproblemofexcessive1-butenedistillationcolumninthisprocess.Theheightofpackingcanbereducedandthedesiredseparationeffectcanbeachievedbyusingfour-leafregularity.HeatExchangerInnovationSKstaticmixingdeviceTheproblemofheattransferdeteriorationcausedbylowheattransferefficiencyandfoulingofheattransfersurfaceareaisadifficultproblemintheprocessofheattransferwhichhasbeenwaitingtobesolvedallovertheworldformanyyears,anditisalsoabottleneckproblemthatrestrictsthedevelopmentofchemicalindustrytoimproveenergyconsumptionutilizationratio.Consideringtheabovefactors,theexistingequipmentsusuallyuseemptytubeasheattransferpipe,whichiseasytoformfoulingandscalingandreduceheattransferefficiency.Therefore,thisprojectusesthe-"SK"staticmixingdevicedevelopedbyWuJianhuainourschool.WeuseSolidworkssoftwaretobuild3Dmodelof"SK"staticmixerandairpipe.WeuseGambitsoftwaretomeshthecalculationarea,importitintoFluent,andselectK-εmodelforhydrodynamicsimulation.Theresultisasfollows: Fig.4.8cloudchartofATCtemperature Fig.4.9Cloudimageoftemperature distributionafteraddingSKstaticmixingdeviceItcanbeclearlyseenfromthediagramthattheheattransferprocessofthepipelineisstrengthenedafteraddingSK,andtheeffectofheattransferisbetterthanthatoftheemptytube.Theheattransfercoefficientofactualproductionisincreased,theheattransferareaisreduced,andthesizeoftheheatexchangerisalsoreduced.Itsavesspaceandreducesproductioncost.AutomatedControlESDcontrolESD(Emergencyparkingsystem)isalinkofSIS(secureinterlockingsystem)andthemostimportantlinkinphysicalhardware.Itisdesignedforsafetyinproduction.Itisusedincontinuousoperationfieldssuchashightemperature,highpressure,flammableandexplosive.Itistorespondtoandprotectthepossibledangeroftheproductionplantortotakenomeasurestokeepitdeteriorating,sothattheproductionplantcanquicklyenterasafeshutdowncondition,sothattheriskcanbeminimizedinordertoensurenel,equipment,Safetyoftheproductionandinstallationorsurroundingcommunitiesoftheplant.TraditionalchemicalplantsmostlyuseDCSdistributedcontrolsystem,andthisprocessWehaveadoptedamorerapidandsensitiveESDemergencyparkingsystem.CALCULATORcomputerAsshowninthefigure,inthehydrogenationreaction,themassratioofdiolefins,alkynesandhydrogenwasstrictlycontrolledbymeansofacalculator.Inconventionalcontrol,toomuchhydrogenwillleadtothedeephydrogenationofalkanes,toolittlehydrogenwillleadtopletehydrogenationofalkyne,andtoomuchalkynesinthefeedstockwilldeactivatePDinthecatalyst.Inordertosolvethisproblem,weadoptinligentcomputercontrol,bymeasuringthepipelineflowrateofalkynesanddiolefinsincarbonfourfeed,theratioofcarbon4tohydrogeniscontrolledinastablestate,sothatthereactioncanbecarriedoutefficiently.Theyieldofmonoolefinswasincreased.Siteselectionand sitesite PetrochemicalCo.,.islocatedinQing ShixifengIndustrialPark,GansuProvince,isaproduction,sales,warehousingandlogisticsasoneofthecomprehensivechemicalenterprises.Thecompanyhasobviousregionaladvantages,locatedbetweenLanzhouEconomicCircleandXi'anEconomicCircle,locatedontheLonghaiEconomicZone.ItsdevelopmentissimultaneouslyaffectedbytheradiationofthesetwoeconomiccirclesandtheeconomicdevelopmentaxisofLonghai.Inaddition,theXifengDistrictHighway,Therailwayiswelldevelopedandconvenientfortransportation.WeselectedthesitefortheexpansionsiteofQing YongxinPetrochemicalCo.,inXinfengDistrict,Qing City,GansuProvince.ThelocationofthesiteisshowninthefollowingFig.5.1Salitemapof Fig5.2sitePlantFig.5.3GenerallayoutThereareatotaloffourdoorsinthefactoryarea:oneontheeastsideandoneonthenorthside,oneonthewestsideandoneonthesouthside.Fivemainroadswithawidthof12mconstitutethemainlogisticschannels.Itisfavorableforthelargecartoenterandexit,andthevehicledoesnothavetoreverse,canleavefactorydirectly,thelogisticslineoffactoryareaisclearandcontrollable.Thetwosidesofthechannelaredividedintoproductionarea,loadingandunloadingarea,storageareaandsoon,whichfacilitatetheloadingandunloadingandtransportationofauxiliarymaterialsandproducts.Thischannelconcentratesthelogisticslineinthelogisticsconcentrationareaofthefactoryarea.Themainentrancetotheeastandnorthisthemainpassagewayofpeople.Onbothsidesofthepassagearetheofficebuildings,thecentralcontrolroom,andthelaboratorycenterMoreconcentratedandquietenvironmentarea,thepassagewillbeconcentratedinthenortheastcornerofthefactory.A12mwidefiretunnelissetasideforemergencyevacuationandfireSuchadesignmakesthedrivingareaofthetransportvehiclemainlyloca
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年宠物营养师课本内容试题及答案
- 美容师考试提升方案及试题答案
- 2024年宠物营养师案例分析试题及答案
- 精神科症状学试题及答案
- 2024年非法改装车评估难点试题及答案
- 汽车美容师行业资讯获取与运用能力考核试题及答案
- 2024年美容师美学设计与市场趋势试题及答案
- 医疗岗模拟面试题及答案
- 古代文学的价值观念与文化传承试题及答案
- 2024年统计学考试兴趣激发试题及答案
- 化疗药物规范配置
- 学校灭火及应急疏散预案
- 江苏省扬州市梅岭集团2024-2025学年九年级下学期3月月考英语试题(原卷版+解析版)
- 2025年义乌工商职业技术学院单招职业适应性测试题库及参考答案1套
- 2025年幼儿教师笔试试题及答案
- 病区8S管理成果汇报
- 2025年华侨港澳台学生联招考试英语试卷试题(含答案详解)
- 2024年安徽省安庆市中考一模数学试题
- 2025年临床医师定期考核必考复习题库及答案(1080题)
- DL-T5706-2014火力发电工程施工组织设计导则
- GA 1800.5-2021电力系统治安反恐防范要求第5部分:太阳能发电企业
评论
0/150
提交评论