云南省丽江市古城2023年高考数学全真模拟密押卷含解析_第1页
云南省丽江市古城2023年高考数学全真模拟密押卷含解析_第2页
云南省丽江市古城2023年高考数学全真模拟密押卷含解析_第3页
云南省丽江市古城2023年高考数学全真模拟密押卷含解析_第4页
云南省丽江市古城2023年高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A. B. C. D.2.函数的定义域为()A. B. C. D.3.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.114.已知集合,,则A. B.C. D.5.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.6.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()A. B. C.8 D.67.已知函数若对区间内的任意实数,都有,则实数的取值范围是()A. B. C. D.8.下列函数中,值域为的偶函数是()A. B. C. D.9.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)10.一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为()A. B. C. D.11.的内角的对边分别为,若,则内角()A. B. C. D.12.在的展开式中,含的项的系数是()A.74 B.121 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_____.14.已知下列命题:①命题“∃x0∈R,”的否定是“∀x∈R,x2+1<3x”;②已知p,q为两个命题,若“p∨q”为假命题,则“”为真命题;③“a>2”是“a>5”的充分不必要条件;④“若xy=0,则x=0且y=0”的逆否命题为真命题.其中所有真命题的序号是________.15.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.16.某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.18.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)设直线与曲线交于,两点,求;(Ⅱ)若点为曲线上任意一点,求的取值范围.19.(12分)已知,,,.(1)求的值;(2)求的值.20.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.21.(12分)在中,角,,的对边分别为,,,已知.(1)若,,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由.22.(10分)已知的内角,,的对边分别为,,,且.(1)求;(2)若的面积为,,求的周长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.2.C【解析】

函数的定义域应满足故选C.3.D【解析】

由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.4.D【解析】

因为,,所以,,故选D.5.B【解析】

利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.6.D【解析】

作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因为,所以为线段的中点,所以F到l的距离为.故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.7.C【解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得.当a<1时,,所以函数f(x)在单调递减,因为对区间内的任意实数,都有,所以,所以故a≥1,与a<1矛盾,故a<1矛盾.当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.所以因为对区间内的任意实数,都有,所以,所以即令,所以所以函数g(a)在(1,e)上单调递减,所以,所以当1≤a<e时,满足题意.当a时,函数f(x)在(0,1)单调递增,因为对区间内的任意实数,都有,所以,故1+1,所以故综上所述,a∈.故选C.点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.8.C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.9.B【解析】M=y|y=N==x|∴M∩N=(1,2).故选B.10.A【解析】

求出满足条件的正的面积,再求出满足条件的正内的点到顶点、、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案.【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题.11.C【解析】

由正弦定理化边为角,由三角函数恒等变换可得.【详解】∵,由正弦定理可得,∴,三角形中,∴,∴.故选:C.【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键.12.D【解析】

根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为:,所以含的项的系数是的系数是,,故选:D【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

把已知等式变形,再由复数代数形式的乘除运算化简,求出得答案.【详解】,,则,的共轭复数在复平面内对应点的坐标为,故答案为【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义准确计算是关键,是基础题.14.②【解析】命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”,故①错误;“p∨q”为假命题说明p假q假,则(p)∧(q)为真命题,故②正确;a>5⇒a>2,但a>2⇒/a>5,故“a>2”是“a>5”的必要不充分条件,故③错误;因为“若xy=0,则x=0或y=0”,所以原命题为假命题,故其逆否命题也为假命题,故④错误.15.【解析】

先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.16.【解析】

从7人中选出2人则总数有,符合条件数有,后者除以前者即得结果【详解】从7人中随机选出2人的总数有,则记选出的名同学中恰好名男生名女生的概率为事件,∴故答案为:【点睛】组合数与概率的基本运用,熟悉组合数公式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)【解析】

(1)取的中点,结合三角形中位线和长度关系,为平行四边形,进而得到,根据线面平行判定定理可证得结论;(2)以,,为,,轴建立空间直角坐标系,分别求得两面的法向量,求得法向量夹角的余弦值;根据二面角为锐角确定最终二面角的余弦值;【详解】(1)取的中点,连结,因为为中点,,,所以,,∴为平行四边形,所以,又因为,所以;(2)由题及(1)易知,,两两垂直,所以以,,为,,轴建立空间直角坐标系,则,,,,,,易知面的法向量为设面的法向量为则可得所以,如图可知二面角为锐角,所以余弦值为【点睛】本题考查立体几何中直线与平面平行关系的证明、空间向量法求解二面角,正确求解法向量是解题的关键,属于中档题.18.(Ⅰ)6(Ⅱ)【解析】

(Ⅰ)化简得到直线的普通方程化为,,是以点为圆心,为半径的圆,利用垂径定理计算得到答案.(Ⅱ)设,则,得到范围.【详解】(Ⅰ)由题意可知,直线的普通方程化为,曲线的极坐标方程变形为,所以的普通方程分别为,是以点为圆心,为半径的圆,设点到直线的距离为,则,所以.(Ⅱ)的标准方程为,所以参数方程为(为参数),设,,因为,所以,所以.【点睛】本题考查了参数方程,极坐标方程,意在考查学生的计算能力和应用能力.19.(1)(2)【解析】

(1)先利用同角的三角函数关系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【详解】解:(1)因为,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因为且,即,解得,因为,所以,所以,所以,所以【点睛】本题考查已知三角函数值求值,考查三角函数的化简,考查和角公式,二倍角公式,同角的三角函数关系的应用,考查运算能力.20.(1)证明见解析;(2).【解析】

(1)取中点,连接,根据等腰三角形的性质得到,利用全等三角形证得,由此证得平面,进而证得平面平面.(2)由(1)知平面,即是四面体的面上的高,结合锥体体积公式,求得四面体的体积.【详解】(1)证明:如图,取中点,连接,由则,则,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面体的面上的高,且.在中,,由勾股定理易知故四面体的体积【点睛】本小题主要考查面面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于中档题.21.见解析【解析】

(1)因为,,成等差数列,所以,由余弦定理可得,因为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论