下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
复变函数简单总结复变函数简单总结复变函数简单总结xxx公司复变函数简单总结文件编号:文件日期:修订次数:第1.0次更改批准审核制定方案设计,管理制度对于某些专业的工科学生,学习复变函数是非常有意义的。复变函数的记号是w=f(z)。
从几何的角度上看,复变函数是一个复平面上的点集到另一个复平面上的一个映射。
在直角坐标系复平面上,自变量记作z=x+iy,函数值记作w=u+iv。那么复变函数w=f(z)就等价于两个二元函数u=u(x,y),v=v(x,y),即一个复变函数的映射,等同于两个二元实函数的映射。
在物理学或力学中,可以用复变函数来建立“平面场”的数学模型,例如在流体力学中,平面流速场的速度分布可用复函数V=V(z)=Vx(x,y)+iVy(x,y)来表示,其中,Vx(x,y)和Vy(x,y)是坐标轴方向的速度分量(不是偏导数记号),V(z)则称为复速度。
在静电学中,平面静电场也可以用复函数E(z)=Ex(x,y)+iEy(x,y)来表示,Ex(x,y)和Ey(x,y)是坐标轴方向的场强分量,E(z)称为复场强。
对于理科的物理专业,以及工科与流体力学、电工电子学有关的各类专业,“复变函数与数学物理方法”课程(也有分为两门的,甚至三门的,即积分变换)都是很基础的一门课程。复变函数泛谈首先,复变函数以复数为中心进行一系列讨论和分析,而复数的独特之处在于它的虚部,也就是虚数部分;之前对虚数域的认识,完全在于一个虚字。而对于复变产生的意义,书中是这样给出的:由于解代数方程的需要,人们引出了复数。复数的出现,使得基本运算中的开方运算不再存在无解情况,n此多项式也不再存在增根,这为人类在某些逻辑领域的运算提供了帮助。复数的集合——复平面是一个二维平面,但却并非我们所在的三维世界中的任何一个二维平面。可以说复平面在现实世界中完全找不到具体的一一对应,是一个纯粹缔造出来的二维平面。而就在最近我弄清了两个概念:数学与科学。结论为:数学不是科学。数学不属于科学的范畴,是一种逻辑学,作为工具的学科;而科学则是理论的集合。哪怕是假命题如地心说,也是科学。而区别一个学科是否是科学的,则需要另一门学科作为其判定依据:证伪学。最终令我信服秉洁说的一个理论是:可被证明或证伪的属于科学;而数学,是不可被证伪的。这一定程度上说明了数学是一门形而上学的学科,甚至包括几何学在内。而在数学当中,在我看来复数领域的形而上学兴则更加突出。曾见过有人在论述形而上学时拿虚数和量子理论作为例证。我也曾一度认为量子理论中无观察者的不可知的事物量子状态可以用虚数来表示。当然现在看来,这是一种很浅薄的想法。就好比将著名的佯谬——薛定谔的猫的生死与否映射到复数域上。我曾看到有人对此作过一个类似性形而上学的证明,若将猫的生死,即铀的衰变与否映射到复数域上,那么为了对应铀的衰变概率分布的均匀,不妨将其对应到一队共轭复数上。当观察者出现,猫的生死被确定,不确定性即消失,那么其映射的复数的不存在性也应该消失,即将复数反映到实数域上,相应的运算即取模,可知共轭复数的模是相等的,这与确定后猫的生死的不同是矛盾的。当然,这种简单的推理本身便不甚科学。但结论应为正解:不确定不等于不存在,二者不可相互映射。“虚数”是人类在发展数学上的解题技术时,以人为定义方式发明的一种虚拟的数,在现实生活中不存在,在实务的商用数学中也用不着。“复数”可以解决一些物理数学上的问题,解题到最后经过转化所得到的实数解,才有物理上的意义,带有虚数的复数届时没有意义的。至此,虚数在物理学中不存在的理论在我的认识中仍然是正确的。直到到看到时间的空间矢量代数法则:“时间有空间的方向性,它能做矢量代数。”做代数运算时,虚数就是时间。多普勒效应是证明四维时间存在的实验基础之一。虚数是的确不存在于三维世界中的,但却被定义为第四维的时间。虚数时间只是用数学呈现的方法,是一种处理方式。就像RCL电路我们也用虚数去处理相角关系,但电感本身并不是虚的。这是人为的定义,但这也在一定意义上揭示了虚数有可能存在的某些物理特征。之后我又得到了物理学中有关快子的概念:快子是理论上预言的粒子。它具有超过光速的局部速度(瞬时速度)。它的质量是虚数,但能量和动量是实数。有人认为这种粒子无法检测,但实际未必如此。影子和光斑的例子就说明超过光速的东西也是可以观测到的。目前尚无快子存在的实验证据,绝大多数人怀疑它们的存在。有人声称在测氚的贝塔衰变放出的中微子质量的实验中有证据表明这些中微子是快子。这很让人怀疑,但不能完全排除这种可能。快子虽未被科学界认可,但至少已经人类已将虚数应用到物理学中。其一旦被证明,虚数不存在物理意义的观点即被打破。虚数是有很大的的现实意义的,通过引入虚数,那些‘没有意义”的根式也变得有理可寻。可是在历史上虚数的存在性及它的意义曾经引起一场激烈的论战。虚数被讥笑为‘数的鬼魂’,一些象笛卡尔这样的大数学也拒绝承认它。这场争论一直要到一八零零年左右几何解释虚数成功后才慢慢平静下来。对实用主义者而言,虚数当然是一个计算的工具,只要它有用就行了,但对于严肃的数学家来说却并非如此。高斯就曾经说过,关键不在于应用,而在于如果歧视这些虚量,整个分析学就会失去大量的美和灵活性。为什么认为“歧视虚数”就不美呢?我想这是由于数学中第二个关于美的法则在起作用:对称性法则。当我们把虚数和实数认为是同样真实,只是分别属于一个统一的复平面的横轴和竖轴时,所有的代数方程的解对于实数和虚数而言就具有了一种对称性。而任何人为的‘歧视’都将打破这种对称。”通过课程的学习,我们可以了解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年蔬菜大棚租赁与农业信息化建设合作协议2篇
- 2024-2025学年西和县三上数学期末综合测试模拟试题含解析
- 2025年沥青路面养护车项目立项申请报告模稿
- 2025年日用陶瓷制品项目申请报告模范
- 2025年润滑油添加剂项目申请报告模范
- 高一名著读书心得800字
- 工程工作计划模板五篇
- 幼儿园中秋节演讲10篇
- 个人原因辞职报告(15篇)
- 2021初中教师教学总结汇报模板10篇
- 窗帘采购投标方案(技术方案)
- TTJSFB 002-2024 绿色融资租赁项目评价指南
- 统编版(2024新版)七年级上册历史期末复习课件
- 2024-2030年串番茄行业市场发展分析及前景趋势与投资研究报告
- 制造业数据架构设计顶层规划方案
- 新《建设工程施工合同司法解释》逐条解读
- 2024-2025学年高中英语学业水平合格性考试模拟测试卷一含解析
- 2024-2025学年广东省东莞市高三思想政治上册期末试卷及答案
- 9-XX人民医院样本外送检测管理制度(试行)
- 场地硬化合同范文
- 智力残疾送教上门教案
评论
0/150
提交评论