版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数和幂函数知识点二次函数和幂函数知识点二次函数和幂函数知识点二次函数和幂函数知识点编制仅供参考审核批准生效日期地址:电话:传真:邮编:教学内容 二次函数与幂函数1.二次函数的定义与解析式(1)二次函数的定义形如:f(x)=ax2+bx+c_(a≠0)的函数叫作二次函数.(2)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c_(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)_(a≠0).2.二次函数的图像和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图像定义域(-∞,+∞)(-∞,+∞)值域eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(4ac-b2,4a),+∞))eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(4ac-b2,4a)))单调性在x∈eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上单调递减;在x∈eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上单调递增在x∈eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上单调递增;在x∈eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上单调递减奇偶性当b=0时为偶函数,b≠0时为非奇非偶函数顶点eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,2a),\f(4ac-b2,4a)))对称性图像关于直线x=-eq\f(b,2a)成轴对称图形3.幂函数形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.4.幂函数的图像及性质(1)幂函数的图像比较(2)幂函数的性质比较y=xy=x2y=x3y=xeq\f(1,2)y=x-1定义域RRR[0,+∞){x|x∈R且x≠0}值域R[0,+∞)R[0,+∞){y|y∈R且y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性增x∈[0,+∞)时,增;x∈(-∞,0]时,减增增x∈(0,+∞)时,减;x∈(-∞,0)时,减[难点正本疑点清源]1.二次函数的三种形式(1)已知三个点的坐标时,宜用一般式.(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.(3)已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便.2.幂函数的图像(1)在(0,1)上,幂函数中指数越大,函数图像越靠近x轴,在(1,+∞)上幂函数中指数越大,函数图像越远离x轴.(2)函数y=x,y=x2,y=x3,y=xeq\f(1,2),y=x-1可作为研究和学习幂函数图像和性质的代表.1.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数a的取值范围为____________.答案(-∞,-2]解析f(x)的图像的对称轴为x=1-a且开口向上,∴1-a≥3,即a≤-2.2.(课本改编题)已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围为________.答案[1,2]解析y=x2-2x+3的对称轴为x=1.当m<1时,y=f(x)在[0,m]上为减函数.∴ymax=f(0)=3,ymin=f(m)=m2-2m∴m=1,无解.当1≤m≤2时,ymin=f(1)=12-2×1+3=2,ymax=f(0)=3.当m>2时,ymax=f(m)=m2-2m∴m=0,m=2,无解.∴1≤m≤2.3.若幂函数y=(m2-3m+3)xm2-m-2的图像不经过原点,则实数m的值为________.答案1或2解析由eq\b\lc\{\rc\(\a\vs4\al\co1(m2-3m+3=1,m2-m-2≤0)),解得m=1或2.经检验m=1或2都适合.4.(人教A版教材例题改编)如图中曲线是幂函数y=xn在第一象限的图像.已知n取±2,±eq\f(1,2)四个值,则相应于曲线C1,C2,C3,C4的n值依次为____________.答案2,eq\f(1,2),-eq\f(1,2),-2解析可以根据函数图像是否过原点判断n的符号,然后根据函数凸凹性确定n的值.5.函数f(x)=x2+mx+1的图像关于直线x=1对称的充要条件是 ()A.m=-2 B.m=2C.m=-1 D.m=1答案A解析函数f(x)=x2+mx+1的图像的对称轴为x=-eq\f(m,2),且只有一条对称轴,所以-eq\f(m,2)= 1,即m=-2.题型一求二次函数的解析式例1已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数.思维启迪:确定二次函数采用待定系数法,有三种形式,可根据条件灵活运用.解方法一设f(x)=ax2+bx+c(a≠0),依题意有eq\b\lc\{\rc\(\a\vs4\al\co1(4a+2b+c=-1,,a-b+c=-1,,\f(4ac-b2,4a)=8,))解之,得eq\b\lc\{\rc\(\a\vs4\al\co1(a=-4,,b=4,,c=7,))∴所求二次函数解析式为f(x)=-4x2+4x+7.方法二设f(x)=a(x-m)2+n,a≠0.∵f(2)=f(-1),∴抛物线对称轴为x=eq\f(2+-1,2)=eq\f(1,2).∴m=eq\f(1,2).又根据题意函数有最大值为n=8,∴y=f(x)=aeq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))2+8.∵f(2)=-1,∴aeq\b\lc\(\rc\)(\a\vs4\al\co1(2-\f(1,2)))2+8=-1,解之,得a=-4.∴f(x)=-4eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))2+8=-4x2+4x+7.方法三依题意知,f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1),a≠0.即f(x)=ax2-ax-2a又函数有最大值ymax=8,即eq\f(4a-2a-1-a2,4a)=8,解之,得a=-4或a=0(舍去).∴函数解析式为f(x)=-4x2+4x+7.探究提高二次函数有三种形式的解析式,要根据具体情况选用:如和对称性、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果.已知二次函数f(x)同时满足条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为15;(3)f(x)=0的两根平方和等于17.求f(x)的解析式.解依条件,设f(x)=a(x-1)2+15(a<0),即f(x)=ax2-2ax+a+15.令f(x)=0,即ax2-2ax+a+15=0,∴x1+x2=2,x1x2=1+eq\f(15,a).xeq\o\al(2,1)+xeq\o\al(2,2)=(x1+x2)2-2x1x2=4-2eq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(15,a)))=2-eq\f(30,a)=17,∴a=-2,∴f(x)=-2x2+4x+13.题型二二次函数的图像与性质例2已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.思维启迪:对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用.解(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图像开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.(3)当a=1时,f(x)=x2+2x+3,∴f(|x|)=x2+2|x|+3,此时定义域为x∈[-6,6],且f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2+2x+3,x∈0,6],x2-2x+3,x∈[-6,0])),∴f(|x|)的单调递增区间是(0,6],单调递减区间是[-6,0].探究提高(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解.若函数f(x)=2x2+mx-1在区间[-1,+∞)上递增,则f(-1)的取值范围是____________.答案(-∞,-3]解析∵抛物线开口向上,对称轴为x=-eq\f(m,4),∴-eq\f(m,4)≤-1,∴m≥4.又f(-1)=1-m≤-3,∴f(-1)∈(-∞,-3].题型三二次函数的综合应用例3若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.思维启迪:对于(1),由f(0)=1可得c,利用f(x+1)-f(x)=2x恒成立,可求出a,b,进而确定f(x)的解析式.对于(2),可利用函数思想求得.解(1)由f(0)=1,得c=1.∴f(x)=ax2+bx+1.又f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,即2ax+a+b=2x,∴eq\b\lc\{\rc\(\a\vs4\al\co1(2a=2,,a+b=0,))∴eq\b\lc\{\rc\(\a\vs4\al\co1(a=1,,b=-1.))因此,f(x)=x2-x+1.(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可.∵g(x)=x2-3x+1-m在[-1,1]上单调递减,∴g(x)min=g(1)=-m-1,由-m-1>0得,m<-1.因此满足条件的实数m的取值范围是(-∞,-1).探究提高二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图像贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图像是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.已知函数f(x)=x2+mx+n的图像过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图像关于原点对称.(1)求f(x)与g(x)的解析式;(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围.解(1)∵f(x)=x2+mx+n,∴f(-1+x)=(-1+x)2+m(-1+x)+n=x2-2x+1+mx+n-m=x2+(m-2)x+n-m+1,f(-1-x)=(-1-x)2+m(-1-x)+n=x2+2x+1-mx-m+n=x2+(2-m)x+n-m+1.又f(-1+x)=f(-1-x),∴m-2=2-m,即m=2.又f(x)的图像过点(1,3),∴3=12+m+n,即m+n=2,∴n=0,∴f(x)=x2+2x,又y=g(x)与y=f(x)的图像关于原点对称,∴-g(x)=(-x)2+2×(-x),∴g(x)=-x2+2x.(2)∵F(x)=g(x)-λf(x)=-(1+λ)x2+(2-2λ)x,当λ+1≠0时,F(x)的对称轴为x=eq\f(2-2λ,21+λ)=eq\f(1-λ,λ+1),又∵F(x)在(-1,1]上是增函数.∴eq\b\lc\{\rc\(\a\vs4\al\co1(1+λ<0,\f(1-λ,1+λ)≤-1))或eq\b\lc\{\rc\(\a\vs4\al\co1(1+λ>0,\f(1-λ,1+λ)≥1)).∴λ<-1或-1<λ≤0.当λ+1=0,即λ=-1时,F(x)=4x显然在(-1,1]上是增函数.综上所述,λ的取值范围为(-∞,0].题型四幂函数的图像和性质例4已知幂函数f(x)=xm2-2m-3(m∈N*)的图像关于y轴对称,且在(0,+∞)上是减函数,求满足(a+1)-eq\f(m,3)<(3-2a)-eq\f(m,3)的a的取值范围.思维启迪:由幂函数的性质可得到幂指数m2-2m-3<0,再结合m是整数,及幂函数是偶函数可得m解∵函数在(0,+∞)上递减,∴m2-2m-3<0,解得-1<m∵m∈N*,∴m=1,2.又函数的图像关于y轴对称,∴m2-2m而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m=1.而f(x)=x-eq\f(1,3)在(-∞,0),(0,+∞)上均为减函数,∴(a+1)-eq\f(1,3)<(3-2a)-eq\f(1,3)等价于a+1>3-2a>0或0>a+1>3-2a或a+1<0<3-2a.解得a<-1或eq\f(2,3)<a<eq\f(3,2).故a的取值范围为eq\b\lc\{\rc\}(\a\vs4\al\co1(a|a<-1或\f(2,3)<a<\f(3,2))).探究提高(1)幂函数解析式一定要设为y=xα(α为常数的形式);(2)可以借助幂函数的图像理解函数的对称性、单调性.方法与技巧1.二次函数、二次方程、二次不等式间相互转化的一般规律:(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图像数形结合来解,一般从①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图像、性质求解.2.与二次函数有关的不等式恒成立问题(1)ax2+bx+c>0,a≠0恒成立的充要条件是eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,b2-4ac<0)).(2)ax2+bx+c<0,a≠0恒成立的充要条件是eq\b\lc\{\rc\(\a\vs4\al\co1(a<0,b2-4ac<0)).3.幂函数y=xα(α∈R),其中α为常数,其本质特征是以幂的底x为自变量,指数α为常数.失误与防范1.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.2.幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像最多只能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.(2011·浙江)设函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(-x,x≤0,,x2,x>0,))若f(α)=4,则实数α等于 ()A.-4或-2 B.-4或2C.-2或4 D.-2或2答案B解析当α≤0时,f(α)=-α=4,得α=-4;当α>0时,f(α)=α2=4,得α=2.∴α=-4或α=2.2.已知函数f(x)=x2-2x+2的定义域和值域均为[1,b],则b等于 ()A.3 B.2或3 C.2 D.1或2答案C解析函数f(x)=x2-2x+2在[1,b]上递增,由已知条件eq\b\lc\{\rc\(\a\vs4\al\co1(f1=1,,fb=b,,b>1,))即eq\b\lc\{\rc\(\a\vs4\al\co1(b2-3b+2=0,,b>1.))解得b=2.3.设abc>0,二次函数f(x)=ax2+bx+c的图像可能是 ()答案D解析由A,C,D知,f(0)=c<0.∵abc>0,∴ab<0,∴对称轴x=-eq\f(b,2a)>0,知A,C错误,D符合要求.由B知f(0)=c>0,∴ab>0,∴x=-eq\f(b,2a)<0,B错误.4.设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是 ()A.(-∞,0] B.[2,+∞)C.(-∞,0]∪[2,+∞) D.[0,2]答案D解析二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,则a≠0,f′(x)=2a(x-1)<0,x所以a>0,即函数图像的开口向上,对称轴是直线x=1.所以f(0)=f(2),则当f(m)≤f(0)时,有0≤m≤2.二、填空题(每小题5分,共15分)5.二次函数的图像过点(0,1),对称轴为x=2,最小值为-1,则它的解析式为____________.答案y=eq\f(1,2)(x-2)2-16.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数a的取值范围为____________.答案(-∞,-2]解析f(x)的图像的对称轴为x=1-a且开口向上,∴1-a≥3,即a≤-2.7.当α∈eq\b\lc\{\rc\}(\a\vs4\al\co1(-1,\f(1,2),1,3))时,幂函数y=xα的图像不可能经过第________象限.答案二、四解析当α=-1、1、3时,y=xα的图像经过第一、三象限;当α=eq\f(1,2)时,y=xα的图像经过第一象限.三、解答题(共22分)8.(10分)已知二次函数f(x)的二次项系数为a,且f(x)>-2x的解集为{x|1<x<3},方程f(x)+6a=0有两相等实根,求f(x解设f(x)+2x=a(x-1)(x-3)(a<0),则f(x)=ax2-4ax+3a-2xf(x)+6a=ax2-(4a+2)x+Δ=[-(4a+2)]2-36a2=0,即(5a解得a=-eq\f(1,5)或a=1(舍去).因此f(x)的解析式为f(x)=-eq\f(1,5)(x-1)(x-3).9.(12分)是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]若存在,求a的值;若不存在,说明理由.解f(x)=(x-a)2+a-a2.当a<-1时,f(x)在[-1,1]上为增函数,∴eq\b\lc\{\rc\(\a\vs4\al\co1(f-1=1+3a=-2,,f1=1-a=2))⇒a=-1(舍去);当-1≤a≤0时,eq\b\lc\{\rc\(\a\vs4\al\co1(fa=a-a2=-2,,f1=1-a=2))⇒a=-1;当0<a≤1时,eq\b\lc\{\rc\(\a\vs4\al\co1(fa=a-a2=-2,,f-1=1+3a=2))⇒a不存在;当a>1时,f(x)在[-1,1]上为减函数,∴eq\b\lc\{\rc\(\a\vs4\al\co1(f-1=1+3a=2,,f1=1-a=-2))⇒a不存在.综上可得a=-1.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共20分)1.已知幂函数f(x)=xα的图像经过点eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(\r(2),2))),则f(4)的值等于 ()A.16 \f(1,16)C.2 \f(1,2)答案D解析将点eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(\r(2),2)))代入得:2α=eq\f(\r(2),2),所以α=-eq\f(1,2),故f(4)=eq\f(1,2).2.已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是 ()A.(0,2) B.(0,8)C.(2,8) D.(-∞,0)答案B解析当m≤0时,显然不合题意;当m>0时,f(0)=1>0,①若对称轴eq\f(4-m,2m)≥0,即0<m≤4,结论显然成立;②若对称轴eq\f(4-m,2m)<0,即m>4,只要Δ=4(4-m)2-8m=4(m-8)(m-2)<0即可,即4<m<8,综上,0<m<8,选B.3.已知二次函数y=x2-2ax+1在区间(2,3)内是单调函数,则实数a的取值范围是()A.a≤2或a≥3 B.2≤a≤3C.a≤-3或a≥-2 D.-3≤a≤-2答案A解析由函数图像知,(2,3)在对称轴x=a的左侧或右侧,∴a≥3或a≤2.二、填空题(每小题5分,共15分)4.已知二次函数y=f(x)的顶点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,2),49)),且方程f(x)=0的两个实根之差等于7,则此二次函数的解析式是______________.答案f(x)=-4x2-12x+40解析设二次函数的解析式为f(x)=aeq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(3,2)))2+49(a<0),方程a(x+eq\f(3,2))2+49=0的两个根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 竹子主题课程设计模板
- 职业沟通-评价课程设计
- 《围术期的容量治疗》课件
- 瞬变电磁法课程设计
- 2024中级(四)汽车修理工理论学问试题
- 简单电路课程设计
- 网络流量监测课程设计
- 舞蹈早上好课程设计
- 互联网服务行业营业员工作总结
- 同心树共筑和谐初一班主任第一学期工作总结
- 【MOOC】数字逻辑设计及应用-电子科技大学 中国大学慕课MOOC答案
- ISBAR辅助工具在交班中应用
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
- 唤醒孩子内驱力家校共育家庭教育PPT课件(带内容)
- 合成气精脱硫催化剂的研究报告
- 滚装客船货物的积载绑扎系固分解课件
- 中控楼装饰装修方案
- 三轴试验报告(共12页)
- 学校及周边环境集中整治工作台帐
- 江苏省城市设计编制导则
- 糖尿病随访表(模板)
评论
0/150
提交评论