江苏省苏州市振华中学2022-2023学年数学九年级上册期末经典模拟试题含解析_第1页
江苏省苏州市振华中学2022-2023学年数学九年级上册期末经典模拟试题含解析_第2页
江苏省苏州市振华中学2022-2023学年数学九年级上册期末经典模拟试题含解析_第3页
江苏省苏州市振华中学2022-2023学年数学九年级上册期末经典模拟试题含解析_第4页
江苏省苏州市振华中学2022-2023学年数学九年级上册期末经典模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列是电视台的台标,属于中心对称图形的是()A. B. C. D.2.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6,BC=8,则△AEF的面积是()A.3 B.4 C.5 D.63.方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣34.若,则一次函数与反比例函数在同一坐标系数中的大致图象是()A. B.C. D.5.下面的图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.6.如图,点A,B,C都在⊙O上,若∠C=35°,则∠AOB的度数为()A.35° B.55° C.145° D.70°7.观察下列等式:①②③④…请根据上述规律判断下列等式正确的是()A. B.C. D.8.下列一元二次方程中两根之和为﹣3的是()A.x2﹣3x+3=0 B.x2+3x+3=0 C.x2+3x﹣3=0 D.x2+6x﹣4=09.如图,E是平行四边形ABCD的对角线BD上的点,连接AE并延长交BC于点F,且,则的值是()A. B. C. D.10.如图(1)所示,为矩形的边上一点,动点,同时从点出发,点沿折线运动到点时停止,点沿运动到点时停止,它们运动的速度都是秒,设、同时出发秒时,的面积为.已知与的函数关系图象如图(2)(曲线为抛物线的一部分)则下列结论正确的是()图(1)图(2)A. B.当是等边三角形时,秒C.当时,秒 D.当的面积为时,的值是或秒二、填空题(每小题3分,共24分)11.如图,半圆O的直径AB=18,C为半圆O上一动点,∠CAB=а,点G为△ABC的重心.则GO的长为__________.12.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为_____.13.已知a+b=0目a≠0,则=_____.14.已知△ABC,D、E分别在AC、BC边上,且DE∥AB,CD=2,DA=3,△CDE面积是4,则△ABC的面积是______15.小明练习射击,共射击次,其中有次击中靶子,由此可估计,小明射击一次击中靶子的概率约为__________.16.小亮在投篮训练中,对多次投篮的数据进行记录.得到如下频数表:投篮次数20406080120160200投中次数1533496397128160投中的频率0.750.830.820.790.810.80.8估计小亮投一次篮,投中的概率是______.17.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.18.已知圆的半径为,点在圆外,则长度的取值范围为___________.三、解答题(共66分)19.(10分)为了“城市更美好、人民更幸福”,我市开展“三城联创”活动,环卫部门要求垃圾按三类分别装袋、投放,其中类指废电池,过期药品等有毒垃圾,类指剩余食品等厨余垃圾,类指塑料、废纸等可回收垃圾,甲、乙两人各投放一袋垃圾.(1)甲投放的垃圾恰好是类的概率是;(2)用树状图或表格求甲、乙两人投放的垃圾是不同类别的概率.20.(6分)某服装店老板到厂家选购、两种品牌的羽绒服,品牌羽绒服每件进价比品牌羽绒服每件进价多元,若用元购进种羽绒服的数量是用元购进种羽绒服数量的倍.(1)求、两种品牌羽绒服每件进价分别为多少元?(2)若品牌羽绒服每件售价为元,品牌羽绒服每件售价为元,服装店老板决定一次性购进、两种品牌羽绒服共件,在这批羽绒服全部出售后所获利润不低于元,则最少购进品牌羽绒服多少件?21.(6分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.22.(8分)如图,在直角坐标系中,矩形的顶点、分别在轴和轴正半轴上,点的坐标是,点是边上一动点(不与点、点重合),连结、,过点作射线交的延长线于点,交边于点,且,令,.(1)当为何值时,?(2)求与的函数关系式,并写出的取值范围;(3)在点的运动过程中,是否存在,使的面积与的面积之和等于的面积.若存在,请求的值;若不存在,请说明理由.23.(8分)已知在平面直角坐标系xOy中,抛物线(b为常数)的对称轴是直线x=1.(1)求该抛物线的表达式;(2)点A(8,m)在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标;(3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.24.(8分)已知如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),B(﹣1,0),与y轴交于点C,连接AC,点P是直线AC上方的抛物线上一动点(异于点A,C),过点P作PE⊥x轴,垂足为E,PE与AC相交于点D,连接AP.(1)求点C的坐标;(2)求抛物线的解析式;(3)①求直线AC的解析式;②是否存在点P,使得△PAD的面积等于△DAE的面积,若存在,求出点P的坐标,若不存在,请说明理由.25.(10分)已知:在△ABC中,点D、点E分别在边AB、AC上,且DE//BC,BE平分∠ABC.(1)求证:BD=DE;(2)若AB=10,AD=4,求BC的长.26.(10分)解方程(1)x2-6x-7=0;(2)(2x-1)2=1.

参考答案一、选择题(每小题3分,共30分)1、C【解析】根据中心对称图形的概念即可求解.【详解】A、不是中心对称图形,故此选项错误;

B、不是中心对称图形,故此选项错误;

C、是中心对称图形,故此选项正确;

D、不是中心对称图形,故此选项错误.

故选:C.【点睛】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2、A【分析】因为四边形ABCD是矩形,所以AD=BC=8,∠BAD=90°,,又因为点E,F分别是AO,AD的中点,所以EF为三角形AOD的中位线,推出,,AF:AD=1:2由此即可解决问题.【详解】解:∵四边形ABCD是矩形,AB=6,BC=8

∴,∵E,F分别是AO.AD中点,

∴,,AF:AD=1:2,∴△AEF的面积为3,

故选:A.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.3、C【解析】利用因式分解法解一元二次方程即可.解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.4、C【分析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【详解】解:.A.根据一次函数可判断a>0,b<0,即ab<0,故不符合题意,

B.根据反比例函数可判断ab<0,故不符合题意,

C.根据一次函数可判断a<0,b<0,即ab>0,根据反比例函数可判断ab>0,故符合题意,

D.根据反比例函数可判断ab<0,故不符合题意.

故选:C.【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质是解决问题的关键.5、D【解析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A.不是轴对称图形,是中心对称图形,故此选项错误;B.不是轴对称图形,是中心对称图形,故此选项错误;C.是轴对称图形,也是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.6、D【解析】∵∠C=35°,∴∠AOB=2∠C=70°.故选D.7、C【分析】根据题目中各个式子的变化规律,可以判断各个选项中的等式是否成立,从而可以解答本题.【详解】解:由题意可得,,选项A错误;,选项B错误;,选项C正确;,选项D错误.故选:C.【点睛】本题考查的知识点是探寻数式的规律,从题目中找出式子的变化规律是解此题的关键.8、C【分析】利用判别式的意义对A、B进行判断;根据根与系数的关系对C、D进行判断.【详解】A.△=(﹣3)2﹣4×3<0,方程没有实数解,所以A选项错误;B.△=32﹣4×3<0,方程没有实数解,所以B选项错误;C.方程x2+3x﹣3=0的两根之和为﹣3,所以C选项正确;D.方程x2+6x﹣4=0的两根之和为﹣6,所以D选项错误.故选:C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.也考查了判别式的意义.9、A【分析】由BF∥AD,可得,再借助平行四边形的性质把AD转化为BC即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC,∵,∴.∵BF∥AD,∴=.故选A【点睛】本题主要考查平行四边形的性质和平行线截线段成比例定理,掌握平行线截线段成比例定理是解题的关键.10、D【分析】先根据图象信息求出AB、BE、BE、AE、ED,A、直接求出比,B、先判断出∠EBC≠60°,从而得出点P可能在ED上时,△PBQ是等边三角形,但必须是AD的中点,而AE>ED,所以点P不可能到AD中点的位置,故△PBQ不可能是等边三角形;C、利用相似三角形性质列出方程解决,分两种情况讨论计算即可,D、分点P在BE上和点P在CD上两种情况计算即可.【详解】由图象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,A、∴AB:AD=5:4,故A错误,B、∵tan∠ABE=,∴∠ABE≠30°∴∠PBQ≠60°,∴点P在ED时,有可能△PBQ是等边三角形,∵BE=BC,∴点P到点E时,点Q到点C,∴点P在线段AD中点时,有可能△PBQ是等边三角形,∵AE>DE,∴点P不可能到AD的中点,∴△PBQ不可能是等边三角形,故B错误,C、∵△ABE∽△QBP,∴点E只有在CD上,且满足,∴,∴CP=.∴t=(BE+ED+DQ)÷1=5+2+(4−)=.故C错误,D、①如图(1)在Rt△ABE中,AB=4,BE=5sin∠AEB=,∴sin∠CBE=∵BP=t,∴PG=BPsin∠CBE=t,∴S△BPQ=BQ×PG=×t×t=t2=4,∴t=−(舍)或t=,②当点P在CD上时,S△BPQ=×BC×PC=×5×(5+2+4−t)=×(11−t)=4,∴t=,∴当△BPQ的面积为4cm2时,t的值是或秒,故D正确,故选:D.【点睛】此题是二次函数综合题,主要考查动点问题的函数图象、矩形的性质、三角形的面积公式等知识.解题的关键是读懂图象信息求出相应的线段,学会转化的思想,把问题转化为方程的思想解决,属于中考常考题型..二、填空题(每小题3分,共24分)11、3【分析】根据三角形重心的概念直接求解即可.【详解】如图,连接OC,∵AB为直径,∴∠ACB=90,∵点O是直径AB的中点,重心G在半径OC,∴.故答案为:3.【点睛】本题考查了三角形重心的概念及性质、直径所对圆周角为直角、斜边上的中线等于斜边的一半,熟记并灵活运用三角形重心的性质是解题的关键.12、1.【分析】设盒子内白色乒乓球的个数为x,根据摸到白色乒乓球的概率为列出关于x的方程,解之可得.【详解】解:设盒子内白色乒乓球的个数为,根据题意,得:,解得:,经检验:是原分式方程的解,∴盒子内白色乒乓球的个数为1,故答案为1.【点睛】此题主要考查了概率公式,关键是掌握随机事件A的概率事件A可能出现的结果数:所有可能出现的结果数.13、1【分析】先将分式变形,然后将代入即可.【详解】解:,故答案为1【点睛】本题考查了分式,熟练将式子进行变形是解题的关键.14、25【分析】根据DE∥AB得到△CDE∽△CAB,再由CD和DA的长度得到相似比,从而确定△ABC的面积.【详解】解:∵DE∥AB,∴△CDE∽△CAB,∵CD=2,DA=3,∴,又∵△CDE面积是4,∴,即,∴△ABC的面积为25.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的面积之比等于相似比的平方.15、0.9【分析】根据频率=频数÷数据总数计算即可得答案.【详解】∵共射击300次,其中有270次击中靶子,∴射中靶子的频率为=0.9,∴小明射击一次击中靶子的概率约为0.9,故答案为:0.9【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.16、0.1【分析】由小亮每次投篮的投中的频率继而可估计出这名球员投一次篮投中的概率.【详解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的频率大都稳定在0.1左右,∴估计小亮投一次篮投中的概率是0.1,故答案为:0.1.【点睛】本题比较容易,考查了利用频率估计概率.大量反复试验下频率值即概率.概率=所求情况数与总情况数之比.17、0.4m【分析】先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.【详解】∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO.∵∠AOB=∠COD,∴△OAB∽△OCD,∴AO:CO=AB:CD,∴4:1=1.6:CD,∴CD=0.4.故答案为0.4.【点睛】本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.18、【分析】设点到圆心的距离为d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】点P在圆外,则点到圆心的距离大于圆的半径,因而线段OP的长度的取值范围是OP>1.故答案为.【点睛】本题考查了对点与圆的位置关系的判断.熟记点与圆位置关系与数量关系的对应是解题关键,由位置关系可推得数量关系,同样由数量关系也可推得位置关系.三、解答题(共66分)19、(1);(2).【分析】(1)一共有3种等可能的结果,恰为类的概率是(2)根据题意列出所有等可能的结果数,然后根据概率公式求解.【详解】(1)(2)甲乙ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,甲、乙两人投放的垃圾共有9种结果,每种结果出现的可能性相同,其中甲、乙投放的垃圾恰是不同类别的有6种,即(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),∴(甲、乙投放的垃圾是不同类别).【点睛】本题考查了列表法或树状图以及概率的求法.20、(1)种羽绒服每件的进价为元,种羽绒服每件的进价为元(2)最少购进品牌的羽绒服件【分析】(1)设A种羽绒服每件的进价为x元,根据“用10000元购进A种羽绒服的数量是用7000元购进B种羽绒服数量的2倍”列方程求解即可;(2)设购进B品牌的羽绒服m件,根据“这批羽绒服全部出售后所获利润不低于2000元”列不等式,求解即可.【详解】(1)设A种羽绒服每件的进价为x元,根据题意得:解得:x=1.经检验:x=1是原方程的解.当x=1时,x+200=700(元).答:A种羽绒服每件的进价为1元,B种羽绒服每件的进价为700元.(2)设购进B品牌的羽绒服m件,根据题意得:解得:m≥2.∵m为整数,∴m的最小值为2.答:最少购进B品牌的羽绒服2件.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意,找到合适的等量关系,列出方程,此题难度一般.21、(1)见解析;(2).【分析】(1)根据矩形的性质可得∠A=∠D=90°,再根据同角的余角相等求出∠1=∠3,然后利用两角对应相等,两三角形相似证明;

(2)利用勾股定理列式求出BE,再求出DE,然后根据相似三角形对应边成比例列式求解即可.【详解】(1)证明:在矩形ABCD中,∠A=∠D=90°,

∴∠1+∠2=90°,

∵EF⊥BE,

∴∠2+∠3=180°-90°=90°,

∴∠1=∠3,

又∵∠A=∠D=90°,

∴△ABE∽△DEF;

(2)∵AB=3,AE=4,

∴BE==5,

∵AD=6,AE=4,

∴DE=AD-AE=6-4=2,

∵△ABE∽△DEF,

∴,即,

解得EF=.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,利用同角的余角相等求出相等的锐角是证明三角形相似的关键.22、(1)当时,;(2)();(3)存在,.【分析】(1)由题意可知,当OP⊥AP时,∽,∴,即,于是解得x值;(2)根据已知条件利用两角对应相等两个三角形相似,证明三角形OCM和三角形PCO相似,得出对应边成比例即可得出结论;(3)假设存在x符合题意.过作于点,交于点,由与面积之和等于的面积,∴.然后求出ED,EF的长,再根据三角形相似:∽,求出MP的长,进而由上题的关系式求出符合条件的x.【详解】解:(1)证明三角形OPC和三角形PAB相似是解决问题的关键,由题意知,,BC∥OA,∵,∴.∴.∴∽,∴,即,解得(不合题意,舍去).∴当时,;(2)由题意可知,∥,∴.∵(已知),∴.∵,∴∽,∴对应边成比例:,即.∴,因为点是边上一动点(不与点、点重合),且满足∽,所以的取值范围是.(3)假设存在符合题意.如图所示,过作于点,交于点,则.∵与面积之和等于的面积,∴.∴.∵∥,∴∽.∴.即,解得.由(2)得,所以.解得(不合题意舍去).∴在点的运动过程中存在x,,使与面积之和等于的面积,此时.【点睛】1.相似三角形的判定与性质;2.矩形性质.23、(1);(2)(-6,49);(3)答案见解析.【分析】(1)由对称轴为,即可求出b的值,然后代入即可;(2)把代入解析式,求出m,利用抛物线的对称轴性质,即可得到点坐标;(3)选取对称轴左右两边的几个整数,计算出函数值,然后画出抛物线即可.【详解】解:(1)∵对称轴为,∴.∴;∴抛物线的表达式为.(2)∵点A(8,m)在该抛物线的图像上,∴当x=8时,.∴点A(8,49).∴点A(8,49)关于对称轴对称的点A'的坐标为(-6,49).(3)列表,如下:抛物线图像如下图:【点睛】本题考查了二次函数的性质和图像,解题的关键是熟练掌握二次函数的性质和图像的画法.24、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②当点P的坐标为(1,4)时,△PAD的面积等于△DAE的面积.【分析】(1)将代入二次函数解析式即可得点C的坐标;(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3即可得出抛物线的解析式;(3)①设直线直线AC的解析式为,把A(3,0),C代入即可得直线AC的解析式;②存在点P,使得△PAD的面积等于△DAE的面积;设点P(x,﹣x2+2x+3)则点D(x,﹣x+3),可得PD=﹣x2+2x+3﹣(﹣x+3)=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论