版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.1基本立体图形第八章立体几何初步8.1基本立体图形第八章立体几何初步1学习目标重点:感受大量空间实物及模型,概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.1.认识柱、锥、台、球及简单组合体的结构特征.2.能运用结构特征描述现实生活中简单物体的结构..学习目标重点:感受大量空间实物及模型,概括出柱、锥、台、球的2知识梳理一、空间几何体、多面体与旋转体1.什么是空间几何体?空间中的物体,都占据着空间的一部分.如果只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.知识梳理一、空间几何体、多面体与旋转体1.什么是空间几何32.多面体(1)定义:由若干个平面多边形围成的几何体叫做多面体.(2)组成元素:围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.
【拓展提升】1.多面体是由平面多边形围成的,这里的多边形包括它内部的平面部分.2.多面体至少有四个面,如图所示的多面体即是四个面的情况.3.一个多面体由几个面围成就称为几面体.如四面体、五面体、六面体……2.多面体(1)定义:由若干个平面多边形围成的几何体叫做多面43.旋转面、旋转体一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体
.这条定直线叫做旋转体的轴.【特别提醒】1.旋转体是由“平面图形”旋转而形成的,这个平面图形可以是矩形、三角形或其他图形.2.平面图形绕定直线旋转形成旋转体,这条定直线可以是平面图形的边所在的直线,也可以不是,但定直线一定与平面图形在同一个平面内.3.与多面体一样,旋转体是封闭的几何体,包括表面及其内部所有的点.3.旋转面、旋转体一条平面曲线(包括直线)绕它所在平面内的一51.棱柱二、棱柱、棱锥、棱台1.棱柱二、棱柱、棱锥、棱台62021高中人教A版数学必修第二册课件:第八章81基本立体图形72.棱锥2.棱锥82021高中人教A版数学必修第二册课件:第八章81基本立体图形9
【归纳拓展】正棱锥的相关概念及性质:(1)正棱锥的斜高正棱锥侧面的等腰三角形底边上的高叫做正棱锥的斜高.正棱锥的斜高都相等.(2)正棱锥的简单性质各侧棱相等,各侧面都是全等的等腰三角形,斜高都相等.正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形.【归纳拓展】103.棱台3.棱台11【归纳提升】棱台是用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这是从棱锥出发去定义棱台.它说明了棱台与棱锥的联系,为我们提供了解决棱台问题的一种方法,棱台问题常常转化为棱锥问题来解决,即还台为锥.【归纳提升】12
小结&拓展棱柱、棱锥、棱台都是多面体,它们相互之间没有公共部分;四面体是一种特殊的棱锥(三棱锥);直棱柱和平行六面体都是棱柱,它们又有公共部分——直平行六面体,而长方体是特殊的直平行六面体.1.所有棱长都相等的三棱锥叫做正四面体.2.正三棱锥与正四面体的区别和联系正四面体各个面都是全等的等边三角形.正四面体是正三棱锥,但正三棱锥只有在侧棱与底面三角形边长相等时才是正四面体.小结&拓展13三、圆柱、圆锥、圆台和球圆柱图形及表示定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱图中圆柱表示为:圆柱O′O相关概念:圆柱的轴:旋转轴.圆柱的底面:垂直于轴的边旋转而成的圆面.圆柱的侧面:平行于轴的边旋转而成的曲面.圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边.三、圆柱、圆锥、圆台和球圆柱图形及表示定义:以矩形的一边所在14圆锥图形及表示定义:以直角三角形的一条直角边所在直线为为旋转轴,其余两边旋转形成的面所围成的旋转体图中圆锥表示为圆锥SO相关概念:圆锥的轴:旋转轴圆锥的底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边圆锥图形及表示定义:以直角三角形的一条直角边所在直线为为旋转15圆台图形及表示定义:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台旋转法定义:以直角梯形中垂直于底边的腰所在直线为旋转轴,将直角梯形绕旋转轴旋转一周而形成的旋转体叫做圆台图中圆台表示为:圆台O′O相关概念:圆台的轴:旋转轴圆台的底面:垂直于轴的边旋转一周所形成的圆面圆台的侧面:不垂直于轴的边旋转一周所形成的曲面母线:无论旋转到什么位置,不垂直于轴的边圆台图形及表示定义:用平行于圆锥底面的平面去截圆锥,底面与截16球图形及表示定义:半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面(是“空心”的),球面所围成的旋转体叫做球体,简称球(是“实心”的).图中的球表示为:球O相关概念:球心:半圆的圆心
半径:连接球心和球面上任意一点的线段叫做球的半径
直径:连接球面上两点并且经过球心的线段叫做球的直径(即半圆的直径).
球图形及表示定义:半圆以它的直径所在直线为旋转轴,旋转一周形17空间几何体在结构上的相同点和不同点及联系
相同点不同点联系棱柱、棱锥、棱台都由平面多边形围成,都有底面,且底面都是多边形棱柱两个底面,平行且全等;棱锥一个底面;棱台两个底面,平行且相似棱台是由棱锥截取得到的圆柱、圆锥、圆台都由平面多边形旋转形成,都有底面,且底面都是圆面圆柱两个底面,是半径相等的圆面;圆锥一个底面,是圆面;圆台两个底面,是不全等但相似的圆面圆台是由圆锥截取得到的空间几何体在结构上的相同点和不同点及联系相同点不同点联系棱182021高中人教A版数学必修第二册课件:第八章81基本立体图形19四.简单组合体(1)定义:由简单几何体组合而成的几何体称作简单组合体.(2)构成形式:①由简单几何体拼接而成.②由简单几何体截去或挖去一部分而成.四.简单组合体(1)定义:由简单几何体组合而成的几何体称作20一.简单几何体的结构特征常考题型1.多面体的结构特征例下列说法正确的是 ()A.各个面都是三角形的几何体是三棱锥B.多面体至少有三个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形一.简单几何体的结构特征常考题型1.多面体的结构特征212021高中人教A版数学必修第二册课件:第八章81基本立体图形22训练题下列三个命题中,正确的有 ()①棱柱中互相平行的两个面叫做棱柱的底面;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③四棱锥有4个顶点.A.0个 B.1个 C.2个 D.3个A
解析:①错误,底面为正六边形的棱柱相对的两个侧面互相平行,但不能作为底面.②错误,因为不能保证侧棱相交于同一点.③错误,四棱锥只有一个顶点,就是各侧面的公共顶点.训练题A解析:①错误,底面为正六边形的棱柱相对的两个侧面互232.旋转体的结构特征下列叙述中正确的个数是 ()①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③半圆绕其直径所在的直线旋转一周所形成的曲面是球;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1 C.2 D.3A
解析:①错误,应以直角三角形的一条直角边所在直线为轴;(2)错误,应以直角梯形的垂直于底边的腰所在直线为轴;③错误,应把“球”改成“球面”;④错误,应是用一个与底面平行的平面去截圆锥.2.旋转体的结构特征A解析:①错误,应以直角三角形的一条直24训练题下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线,可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中正确的是
.(1)(2)解析:(1)正确,圆柱的底面是圆面;(2)正确,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长后相交于一点;(4)不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.训练题(1)(2)解析:(1)正确,圆柱的底面是圆面;(225特别提示:(1)对多面体的判断,一定要紧扣棱柱、棱锥、棱台的结构特征,注意概念中的特殊字眼,切不可马虎大意,如棱柱的概念中的“相邻”,棱锥的概念中的“公共顶点”,棱台的概念中的“棱锥”等.(2)圆柱、圆锥、圆台和球都是由一个平面图形绕其特定边(直径)所在的直线旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.只有理解了各旋转体的形成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的真假.特别提示:(1)对多面体的判断,一定要紧扣棱柱、棱锥、棱台的263.简单组合体的结构特征【解题提示】结合简单组合体的两种基本构成形式入手分析.【解】图8-1-2(1)所示的几何体是由两个圆台拼接而成的组合体;图8-1-2(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图8-1-2(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.3.简单组合体的结构特征【解题提示】结合简单组合体的两种基本27BB282021高中人教A版数学必修第二册课件:第八章81基本立体图形29判断实物是由哪些简单几何体组成的技巧(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).判断实物是由哪些简单几何体组成的技巧30二.简单几何体的侧面展开图二.简单几何体的侧面展开图312021高中人教A版数学必修第二册课件:第八章81基本立体图形322021高中人教A版数学必修第二册课件:第八章81基本立体图形33【名师点拨】解答展开与折叠问题,要结合空间几何体的定义和结构特征,发挥空间想象能力.必要时可制作侧面展开图进行实践操作.【名师点拨】34四.空间几何体表面上两点间的最短距离问题四.空间几何体表面上两点间的最短距离问题352021高中人教A版数学必修第二册课件:第八章81基本立体图形362021高中人教A版数学必修第二册课件:第八章81基本立体图形37求空间几何体表面上两点间的最短距离问题的常用方法求空间几何体表面上两点间的最短距离问题,常常要归结为求平面上两点间的最短距离问题,因此解决这类问题的方法就是先把空间几何体的侧面展开成平面图形,再用平面几何的知识来求解.求空间几何体表面上两点间的最短距离问题的常用方法38五.空间几何体的轴截面及计算问题例
一个圆锥的底面半径为2cm,高为6cm,在圆锥内部有一个高为xcm的内接圆柱.(1)用x表示圆柱的轴截面面积S.(2)当x为何值时,S最大?五.空间几何体的轴截面及计算问题例一个圆锥的底面半径为2392021高中人教A版数学必修第二册课件:第八章81基本立体图形402021高中人教A版数学必修第二册课件:第八章81基本立体图形41六、易错易混问题1.对棱柱、棱锥、棱台的概念理解不到位致误六、易错易混问题422021高中人教A版数学必修第二册课件:第八章81基本立体图形432.画错截面图致错2.画错截面图致错44【防错有术】(1)在画轴截面图时找准中间轴和边界.(2)对旋转体的旋转轴和正方体的结构特征要把握准确.【防错有术】458.1基本立体图形第八章立体几何初步8.1基本立体图形第八章立体几何初步46学习目标重点:感受大量空间实物及模型,概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.1.认识柱、锥、台、球及简单组合体的结构特征.2.能运用结构特征描述现实生活中简单物体的结构..学习目标重点:感受大量空间实物及模型,概括出柱、锥、台、球的47知识梳理一、空间几何体、多面体与旋转体1.什么是空间几何体?空间中的物体,都占据着空间的一部分.如果只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.知识梳理一、空间几何体、多面体与旋转体1.什么是空间几何482.多面体(1)定义:由若干个平面多边形围成的几何体叫做多面体.(2)组成元素:围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.
【拓展提升】1.多面体是由平面多边形围成的,这里的多边形包括它内部的平面部分.2.多面体至少有四个面,如图所示的多面体即是四个面的情况.3.一个多面体由几个面围成就称为几面体.如四面体、五面体、六面体……2.多面体(1)定义:由若干个平面多边形围成的几何体叫做多面493.旋转面、旋转体一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体
.这条定直线叫做旋转体的轴.【特别提醒】1.旋转体是由“平面图形”旋转而形成的,这个平面图形可以是矩形、三角形或其他图形.2.平面图形绕定直线旋转形成旋转体,这条定直线可以是平面图形的边所在的直线,也可以不是,但定直线一定与平面图形在同一个平面内.3.与多面体一样,旋转体是封闭的几何体,包括表面及其内部所有的点.3.旋转面、旋转体一条平面曲线(包括直线)绕它所在平面内的一501.棱柱二、棱柱、棱锥、棱台1.棱柱二、棱柱、棱锥、棱台512021高中人教A版数学必修第二册课件:第八章81基本立体图形522.棱锥2.棱锥532021高中人教A版数学必修第二册课件:第八章81基本立体图形54
【归纳拓展】正棱锥的相关概念及性质:(1)正棱锥的斜高正棱锥侧面的等腰三角形底边上的高叫做正棱锥的斜高.正棱锥的斜高都相等.(2)正棱锥的简单性质各侧棱相等,各侧面都是全等的等腰三角形,斜高都相等.正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形.【归纳拓展】553.棱台3.棱台56【归纳提升】棱台是用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这是从棱锥出发去定义棱台.它说明了棱台与棱锥的联系,为我们提供了解决棱台问题的一种方法,棱台问题常常转化为棱锥问题来解决,即还台为锥.【归纳提升】57
小结&拓展棱柱、棱锥、棱台都是多面体,它们相互之间没有公共部分;四面体是一种特殊的棱锥(三棱锥);直棱柱和平行六面体都是棱柱,它们又有公共部分——直平行六面体,而长方体是特殊的直平行六面体.1.所有棱长都相等的三棱锥叫做正四面体.2.正三棱锥与正四面体的区别和联系正四面体各个面都是全等的等边三角形.正四面体是正三棱锥,但正三棱锥只有在侧棱与底面三角形边长相等时才是正四面体.小结&拓展58三、圆柱、圆锥、圆台和球圆柱图形及表示定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱图中圆柱表示为:圆柱O′O相关概念:圆柱的轴:旋转轴.圆柱的底面:垂直于轴的边旋转而成的圆面.圆柱的侧面:平行于轴的边旋转而成的曲面.圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边.三、圆柱、圆锥、圆台和球圆柱图形及表示定义:以矩形的一边所在59圆锥图形及表示定义:以直角三角形的一条直角边所在直线为为旋转轴,其余两边旋转形成的面所围成的旋转体图中圆锥表示为圆锥SO相关概念:圆锥的轴:旋转轴圆锥的底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边圆锥图形及表示定义:以直角三角形的一条直角边所在直线为为旋转60圆台图形及表示定义:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台旋转法定义:以直角梯形中垂直于底边的腰所在直线为旋转轴,将直角梯形绕旋转轴旋转一周而形成的旋转体叫做圆台图中圆台表示为:圆台O′O相关概念:圆台的轴:旋转轴圆台的底面:垂直于轴的边旋转一周所形成的圆面圆台的侧面:不垂直于轴的边旋转一周所形成的曲面母线:无论旋转到什么位置,不垂直于轴的边圆台图形及表示定义:用平行于圆锥底面的平面去截圆锥,底面与截61球图形及表示定义:半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面(是“空心”的),球面所围成的旋转体叫做球体,简称球(是“实心”的).图中的球表示为:球O相关概念:球心:半圆的圆心
半径:连接球心和球面上任意一点的线段叫做球的半径
直径:连接球面上两点并且经过球心的线段叫做球的直径(即半圆的直径).
球图形及表示定义:半圆以它的直径所在直线为旋转轴,旋转一周形62空间几何体在结构上的相同点和不同点及联系
相同点不同点联系棱柱、棱锥、棱台都由平面多边形围成,都有底面,且底面都是多边形棱柱两个底面,平行且全等;棱锥一个底面;棱台两个底面,平行且相似棱台是由棱锥截取得到的圆柱、圆锥、圆台都由平面多边形旋转形成,都有底面,且底面都是圆面圆柱两个底面,是半径相等的圆面;圆锥一个底面,是圆面;圆台两个底面,是不全等但相似的圆面圆台是由圆锥截取得到的空间几何体在结构上的相同点和不同点及联系相同点不同点联系棱632021高中人教A版数学必修第二册课件:第八章81基本立体图形64四.简单组合体(1)定义:由简单几何体组合而成的几何体称作简单组合体.(2)构成形式:①由简单几何体拼接而成.②由简单几何体截去或挖去一部分而成.四.简单组合体(1)定义:由简单几何体组合而成的几何体称作65一.简单几何体的结构特征常考题型1.多面体的结构特征例下列说法正确的是 ()A.各个面都是三角形的几何体是三棱锥B.多面体至少有三个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形一.简单几何体的结构特征常考题型1.多面体的结构特征662021高中人教A版数学必修第二册课件:第八章81基本立体图形67训练题下列三个命题中,正确的有 ()①棱柱中互相平行的两个面叫做棱柱的底面;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③四棱锥有4个顶点.A.0个 B.1个 C.2个 D.3个A
解析:①错误,底面为正六边形的棱柱相对的两个侧面互相平行,但不能作为底面.②错误,因为不能保证侧棱相交于同一点.③错误,四棱锥只有一个顶点,就是各侧面的公共顶点.训练题A解析:①错误,底面为正六边形的棱柱相对的两个侧面互682.旋转体的结构特征下列叙述中正确的个数是 ()①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③半圆绕其直径所在的直线旋转一周所形成的曲面是球;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1 C.2 D.3A
解析:①错误,应以直角三角形的一条直角边所在直线为轴;(2)错误,应以直角梯形的垂直于底边的腰所在直线为轴;③错误,应把“球”改成“球面”;④错误,应是用一个与底面平行的平面去截圆锥.2.旋转体的结构特征A解析:①错误,应以直角三角形的一条直69训练题下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线,可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中正确的是
.(1)(2)解析:(1)正确,圆柱的底面是圆面;(2)正确,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长后相交于一点;(4)不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.训练题(1)(2)解析:(1)正确,圆柱的底面是圆面;(270特别提示:(1)对多面体的判断,一定要紧扣棱柱、棱锥、棱台的结构特征,注意概念中的特殊字眼,切不可马虎大意,如棱柱的概念中的“相邻”,棱锥的概念中的“公共顶点”,棱台的概念中的“棱锥”等.(2)圆柱、圆锥、圆台和球都是由一个平面图形绕其特定边(直径)所在的直线旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.只有理解了各旋转体的形成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的真假.特别提示:(1)对多面体的判断,一定要紧扣棱柱、棱锥、棱台的713.简单组合体的结构特征【解题提示】结合简单组合体的两种基本构成形式入手分析.【解】图8-1-2(1)所示的几何体是由两个圆台拼接而成的组合体;图8-1-2(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图8-1-2(3)所示的几何体是在一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度电子商务平台合作订单合同4篇
- 专业安装劳务协议规范文本2024版
- 《a临时起搏器》课件
- 二零二五年度矿业权转让中的水资源利用合同3篇
- 2024版园林绿化工程设计与施工合同3篇
- 2025年度智慧能源场标准化改造项目合同协议书4篇
- 2024科研机构与制药公司之间的药物研发合同
- 2024石子加工与新型建材研发生产合同3篇
- 2025年度厂房出租合同附带租赁双方权利义务界定4篇
- 2025年度茶楼消防安全管理责任合同4篇
- 充电桩项目运营方案
- 2024年农民职业农业素质技能考试题库(附含答案)
- 高考对联题(对联知识、高考真题及答案、对应练习题)
- 新版《铁道概论》考试复习试题库(含答案)
- 【律师承办案件费用清单】(计时收费)模板
- 高中物理竞赛真题分类汇编 4 光学 (学生版+解析版50题)
- Unit1FestivalsandCelebrations词汇清单高中英语人教版
- 西方经济学-高鸿业-笔记
- 2024年上海市中考语文试题卷(含答案)
- 幼儿园美术教育研究策略国内外
- 生猪养殖生产过程信息化与数字化管理
评论
0/150
提交评论