版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为()A. B. C. D.2.若,则一次函数与反比例函数在同一坐标系数中的大致图象是()A. B.C. D.3.关于x的一元二次方程中有一根是1,另一根为n,则m与n的值分别是()A.m=2,n=3 B.m=2,n=-3 C.m=2,n=2 D.m=2,n=-24.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,则cosB的值为()A. B. C. D.5.若点,是函数上两点,则当时,函数值为()A.2 B.3 C.5 D.106.给出下列一组数:,,,,,其中无理数的个数为()A.0 B.1 C.2 D.37.若|a+3|+|b﹣2|=0,则ab的值为()A.﹣6B.﹣9C.9D.68.若关于x的一元二次方程有两个实数根,则k的取值范围是()A. B. C. D.9.如图,在中,,,点是边上的一个动点,以为直径的圆交于点,若线段长度的最小值是4,则的面积为()A.32 B.36 C.40 D.4810.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交 B.相切 C.相离 D.无法确定二、填空题(每小题3分,共24分)11.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.12.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,若,则阴影部分图形的周长为______结果保留.13.已知二次函数y=ax2+bx+c的图象如图,对称轴为直线x=1,则不等式ax2+bx+c>0的解集是_____.14.如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,,则线段EF的长为______.15.如图,在中,,以点A为圆心,2为半径的与BC相切于点D,交AB于点E,交AC于点F,点P是上的一点,且,则图中阴影部分的面积为______.16.一个圆锥的底面圆的半径为3,母线长为9,则该圆锥的侧面积为__________.17.若二次函数的对称轴为直线,则关于的方程的解为______.18.一元二次方程x(x﹣3)=3﹣x的根是____.三、解答题(共66分)19.(10分)如图,AB∥CD,AC与BD交于点E,且AB=6,AE=4,AC=1.(1)求CD的长;(2)求证:△ABE∽△ACB.20.(6分)如图,无人机在空中处测得地面、两点的俯角分别为60〫、45〫,如果无人机距地面高度米,点、、在同水平直线上,求、两点间的距离.(结果保留根号)21.(6分)如图,顶点为P(2,﹣4)的二次函数y=ax2+bx+c的图象经过原点,点A(m,n)在该函数图象上,连接AP、OP.(1)求二次函数y=ax2+bx+c的表达式;(2)若∠APO=90°,求点A的坐标;(3)若点A关于抛物线的对称轴的对称点为C,点A关于y轴的对称点为D,设抛物线与x轴的另一交点为B,请解答下列问题:①当m≠4时,试判断四边形OBCD的形状并说明理由;②当n<0时,若四边形OBCD的面积为12,求点A的坐标.22.(8分)已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.(1)求抛物线的解析式和,两点的坐标;(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由.23.(8分)如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△ABC=20,BC=10,求DE的长.24.(8分)一段路的“拥堵延时指数”计算公式为:拥堵延时指数=,指数越大,道路越堵。高德大数据显示第二季度重庆拥堵延时指数首次排全国榜首。为此,交管部门在A、B两拥堵路段进行调研:A路段平峰时汽车通行平均时速为45千米/时,B路段平峰时汽车通行平均时速为50千米/时,平峰时A路段通行时间是B路段通行时间的倍,且A路段比B路段长1千米.(1)分别求平峰时A、B两路段的通行时间;(2)第二季度大数据显示:在高峰时,A路段的拥堵延时指数为2,每分钟有150辆汽车进入该路段;B路段的拥堵延时指数为1.8,每分钟有125辆汽车进入该路段。第三季度,交管部门采用了智能红绿灯和潮汐车道的方式整治,拥堵状况有明显改善,在高峰时,A路段拥堵延时指数下降了a%,每分钟进入该路段的车辆增加了;B路段拥堵延时指数下降,每分钟进入该路段的车辆增加了a辆。这样,整治后每分钟分别进入两路段的车辆通过这两路段所用时间总和,比整治前每分钟分别进入这两段路的车辆通过这两路段所用时间总和多小时,求a的值.25.(10分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,3),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,并求满足条件的点P的坐标;(3)连接OA,OB,求△OAB的面积.26.(10分)解方程:(x+3)2=2x+1.
参考答案一、选择题(每小题3分,共30分)1、B【解析】由小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,直接利用概率公式求解即可求得答案.【详解】解:∵小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,
∴小明选择到甲社区参加实践活动的可能性为:.
故选:B.【点睛】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2、C【分析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【详解】解:.A.根据一次函数可判断a>0,b<0,即ab<0,故不符合题意,
B.根据反比例函数可判断ab<0,故不符合题意,
C.根据一次函数可判断a<0,b<0,即ab>0,根据反比例函数可判断ab>0,故符合题意,
D.根据反比例函数可判断ab<0,故不符合题意.
故选:C.【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质是解决问题的关键.3、C【分析】将根是1代入一元二次方程,即可求出m的值,再解一元二次方程,可求出两个根,即可求出n的值.【详解】解:∵将1代入方程,得到:1-3+m=0,m=2∴∴解得x1=1,x2=2∴n=2故选C.【点睛】本题主要考查了一元二次方程,熟练解满足一元二次方程以及解一元二次方程是解决本题的关键.4、B【详解】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理,得:BC===1.cosB==,故选B.【点睛】本题考查锐角三角函数的定义.5、B【分析】根据点A(x1,5),B(x2,5)是函数y=x2﹣2x+1上两对称点,可求得x=x1+x2=2,把x=2代入函数关系式即可求解.【详解】∵点A(x1,5),B(x2,5)是函数y=x2﹣2x+1上两对称点,对称轴为直线x=1,∴x1+x2=2×1=2,∴x=2,∴把x=2代入函数关系式得y=22﹣2×2+1=1.故选:B.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,以及二次函数的性质.求出x1+x2的值是解答本题的关键.6、C【分析】直接利用无理数的定义分析得出答案.【详解】解:,,,,,其中无理数为,,共2个数.故选C.【点睛】此题考查无理数,正确把握无理数的定义是解题关键.7、C【解析】根据非负数的性质可得a+3=1,b﹣2=1,解得a=﹣3,b=2,所以ab=(﹣3)2=9,故选C.点睛:本题考查了非负数的性质:几个非负数的和为1时,这几个非负数都为1.8、D【解析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键9、D【分析】连接BQ,证得点Q在以BC为直径的⊙O上,当点O、Q、A共线时,AQ最小,在中,利用勾股定理构建方程求得⊙O的半径R,即可解决问题.【详解】如图,连接BQ,∵PB是直径,∴∠BQP=90°,
∴∠BQC=90°,
∴点Q在以BC为直径的⊙O上,∴当点O、Q、A共线时,AQ最小,设⊙O的半径为R,在中,,,,∵,即,解得:,故选:D【点睛】本题考查了圆周角定理,勾股定理,三角形面积公式.解决本题的关键是确定Q点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.10、B【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.二、填空题(每小题3分,共24分)11、6【解析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得,代入数据可得答案.【详解】如图,在中,米,米,易得,,即,米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.12、+1.【详解】解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==•πAB=,∴C阴影=++BC=+1.故答案为+1.13、﹣1<x<1【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(1,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<1时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<1.故答案为﹣1<x<1.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点.14、3【分析】由菱形性质得AC⊥BD,BO=,AO=,由勾股定理得AO=,由中位线性质得EF=.【详解】因为,菱形ABCD中,对角线AC,BD相交于点O,所以,AC⊥BD,BO=,AO=,所以,AO=,所以,AC=2AO=6,又因为E,F分别是的边AB,BC边的中点所以,EF=.故答案为3【点睛】本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.15、【分析】图中阴影部分的面积=S△ABC-S扇形AEF.由圆周角定理推知∠BAC=90°.【详解】解:连接AD,在⊙A中,因为∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S阴影=4-故答案为:【点睛】本题考查了切线的性质与扇形面积的计算.求阴影部分的面积时,采用了“分割法”.16、【分析】先求出底面圆的周长,然后根据扇形的面积公式:即可求出该圆锥的侧面积.【详解】解:底面圆的周长为,即圆锥的侧面展开后的弧长为,∵母线长为9,∴圆锥的侧面展开后的半径为9,∴圆锥的侧面积故答案为:【点睛】此题考查的是求圆锥的侧面积,掌握扇形的面积公式:是解决此题的关键.17、,【分析】根据对称轴方程求得b,再代入解一元二次方程即可.【详解】解:∵二次函数y=x2+bx-5的对称轴为直线x=1,∴=1,即b=-2∴解得:,故答案为,.【点睛】本题主要考查的是抛物线与x轴的交点、一元二次方程等知识,根据抛物线的对称轴确定b的值是解答本题的关键.18、x1=3,x2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.三、解答题(共66分)19、(1);(2)见解析【分析】(1)由线段的和差关系可求出CE的长,由AB//CD可证明△CDE∽△ABE,根据相似三角形的性质即可求出CD的长;(2)根据AB、AE、AC的长可得,由∠A为公共角,根据两组对应边成比例,且对应的夹角相等即可证明△ABE∽△ACB.【详解】(1)∵AE=4,AC=1∴CE=AC-AE=1-4=5∵AB∥CD,∴△CDE∽△ABE,∴,∴.(2)∵,∴∵∠A=∠A,∴△ABE∽△ACB【点睛】本题考查相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;熟练掌握相似三角形的判定定理是解题关键.20、A、B两点间的距离为100(1+)米【分析】如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.【详解】∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在中,∵=,∴AD==100,在中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.21、(1)y=x2﹣4x;(2)A(,﹣);(3)①平行四边形,理由见解析;②A(1,﹣3)或A(3,﹣3).【分析】(1)由已知可得抛物线与x轴另一个交点(4,0),将(2,﹣4)、(4,0)、(0,0)代入y=ax2+bx+c即可求表达式;(2)由∠APO=90°,可知AP⊥PO,所以m﹣2=,即可求A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),可得CD∥OB,CD=CB,所以四边形OBCD是平行四边形;②四边形由OBCD是平行四边形,,所以12=4×(﹣n),即可求出A(1,﹣3)或A(3,﹣3).【详解】解:(1)∵图象经过原点,∴c=0,∵顶点为P(2,﹣4)∴抛物线与x轴另一个交点(4,0),将(2,﹣4)和(4,0)代入y=ax2+bx,∴a=1,b=﹣4,∴二次函数的解析式为y=x2﹣4x;(2)∵∠APO=90°,∴AP⊥PO,∵A(m,m2﹣4m),∴m﹣2=,∴m=,∴A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),∴CD∥OB,∵CD=4,OB=4,∴四边形OBCD是平行四边形;②∵四边形OBCD是平行四边形,,∴12=4×(﹣n),∴n=﹣3,∴A(1,﹣3)或A(3,﹣3).【点睛】本题考查了二次函数与几何综合问题,涉及二次函数求解析式、直角三角形、平行四边形等知识点,解题的关键是灵活运用上述知识点进行推导求解.22、(1)抛物线的解析式为:;点的坐标为,点的坐标为;(2)存在点,使四边形的面积最大;点的坐标为,四边形面积的最大值为32.【分析】(1)根据对称轴公式可以求出a,从而可得抛物线解析式,再解出抛物线解析式y=0是的两个根,即可得到A,B的坐标;(2)根据解析式可求出C点坐标,然后设直线的解析式为,从而可求该解析式方程,假设存在点,使四边形的面积最大,设点的坐标为,然后过点作轴,交直线于点,从而可求答案.【详解】解:(1)∵抛物线的对称轴是直线,∴,解得,∴抛物线的解析式为:.当时,,解得,,∴点的坐标为,点的坐标为.答:抛物线的解析式为:;点的坐标为,点的坐标为.(2)当时,,∴点的坐标为.设直线的解析式为,将,代入得,解得,∴直线的解析式为.假设存在点,使四边形的面积最大,设点的坐标为,如图所示,过点作轴,交直线于点,则点的坐标为,则,∴∴当时,四边形的面积最大,最大值是32∵,∴存在点,使得四边形的面积最大.答:存在点,使四边形的面积最大;点的坐标为,四边形面积的最大值为32.【点睛】本题考查的是一道综合题,考查的是二次函数与一次函数的综合问题,能够熟练掌握一次函数与二次函数的相关问题是解题的关键.23、(1)见解析;(2)【分析】(1)根据题目条件证明和,利用两组对应角相等的三角形相似,证明;(2)过点A作于点M,先通过的面积求出AM的长,根据得到,再算出DE的长.【详解】解:(1)∵,∴,∵D是BC边上的中点且∴,∴,∴;(2)如图,过点A作于点M,∵,∴,解得,∵,,∴,∵,∴,∵,,∴,∴,∴.【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定定理.24、(1)平峰时A路段的通行时间是小时,平峰时B路段的通行时间是小时;(2)的值是1.【分析】(1)根据题意,设平峰时B路段通行时间为小时,则平峰时A路段通行时间是,列出方程,解方程即可得到答案;(2)根据题意,先求出整治前A、B路段的时间总和,然后利用含a的代数式求出整治后A、B路段的时间总和,再列出方程,求出a的值.【详解】解:(1)设平峰时B路段通行时间为小时,则平峰时A路段通行时间是,则,解得:,∴(小时);∴平峰时A路段的通行时间是小时,平峰时B路段的通行时间是小时;(2)根据题意,整治前有:高峰时,通过A路段的总时间为:(分钟),高峰时,通过B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024文化石矿山开采安全生产责任合同范本3篇
- 二零二五年家居装修代理销售合作二零二五年度合同3篇
- 二零二五年度企业安全风险评估与安保方案合同3篇
- 2024年版旋挖钻机施工服务具体合同版B版
- 2025版节能照明产品供货与节能效果评估合同范本3篇
- 二零二五年度1999年劳动合同与企业年金保险结合方案3篇
- 2024年校园广播系统一体化安装合同版
- 2024年还建房及附属设施买卖合同
- 二零二五年度企业信用贷款合同模板2篇
- 2024年版股权投资合同详细条款及服务内容
- 甘肃省兰州市(2024年-2025年小学三年级语文)人教版综合练习(上学期)试卷(含答案)
- 2024年人教版小学四年级信息技术(上册)期末试卷及答案
- 译林版小学英语二年级上全册教案
- DL∕T 821-2017 金属熔化焊对接接头射线检测技术和质量分级
- DL∕ T 1195-2012 火电厂高压变频器运行与维护规范
- 小学五年级英语语法练习
- NB-T32004-2018光伏并网逆变器技术规范
- 领导与班子廉洁谈话记录(4篇)
- 衡阳市耒阳市2022-2023学年七年级上学期期末语文试题【带答案】
- 文库发布:strata手册
- 2024-2030年中国大棚蔬菜种植行业市场发展监测及投资前景展望报告
评论
0/150
提交评论