版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]2.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170 B.10 C.172 D.123.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为()A. B. C. D.4.在中,,,,则在方向上的投影是()A.4 B.3 C.-4 D.-35.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为()A. B.C. D.6.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为()A. B. C. D.7.设,则()A. B. C. D.8.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.9.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.10.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.11.设,且,则()A. B. C. D.12.已知函数,,当时,不等式恒成立,则实数a的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在中,已知,为边的中点.若,垂足为,则的值为__.14.(5分)已知曲线的方程为,其图象经过点,则曲线在点处的切线方程是____________.15.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率—0.40.30.8获胜概率0.6—0.70.5获胜概率0.70.3—0.3获胜概率0.20.50.7—则队获得冠军的概率为______.16.在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.18.(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.19.(12分)在中,内角所对的边分别为,已知,且.(I)求角的大小;(Ⅱ)若,求面积的取值范围.20.(12分)已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.21.(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足(1)求椭圆的标准方程;(2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请说理由.22.(10分)已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.2、D【解析】
中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.3、C【解析】
设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【详解】设的中点为,连接,因此有,而,而平面,,因此有平面,所以动点的轨迹平面与正方体的内切球的交线.正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.4、D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,,,又,,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.5、A【解析】
点的坐标为,,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,.所以双曲线的方程为.故选:【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.6、B【解析】
直接代入检验,排除其中三个即可.【详解】由题意,排除D,,排除A,C.同时B也满足,,,故选:B.【点睛】本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解.7、C【解析】试题分析:,.故C正确.考点:复合函数求值.8、A【解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.9、A【解析】
因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,,,,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.10、A【解析】
根据向量平行的坐标表示即可求解.【详解】,,,,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.11、C【解析】
将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.12、D【解析】
由变形可得,可知函数在为增函数,由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立..令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
,由余弦定理,得,得,,,所以,所以.点睛:本题考查平面向量的综合应用.本题中存在垂直关系,所以在线性表示的过程中充分利用垂直关系,得到,所以本题转化为求长度,利用余弦定理和面积公式求解即可.14、【解析】
依题意,将点的坐标代入曲线的方程中,解得.由,得,则曲线在点处切线的斜率,所以在点处的切线方程是,即.15、0.18【解析】
根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.16、【解析】
代入求解得,再求准线方程即可.【详解】解:双曲线经过点,,解得,即.又,故该双曲线的准线方程为:.故答案为:.【点睛】本题主要考查了双曲线的准线方程求解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)设,根据直线的斜率公式即可求解;(2)设直线的方程为,联立直线与抛物线方程,由韦达定理得,,结合直线的斜率公式得到,换元后讨论的符号,求最值可求解.【详解】(1)设,因为,即直线的斜率为1.(2)显然直线的斜率存在,设直线的方程为.联立方程组,可得则,令,则则当时,;当且仅当,即时,解得时,取“=”号,当时,;当时,综上所述,当时,取得最大值,此时直线的方程是.【点睛】本题主要考查了直线的斜率公式,直线与抛物线的位置关系,换元法,均值不等式,考查了运算能力,属于难题.18、【解析】
根据,可解得,设为曲线任一点,在矩阵对应的变换作用下得到点,则点在曲线上,根据变换的定义写出相应的矩阵等式,再用表示出,代入曲线的方程中,即得.【详解】,,即.,解得,.设为曲线任一点,则,又设在矩阵A变换作用得到点,则,即,所以即代入,得,所以曲线的方程为.【点睛】本题考查逆矩阵,矩阵与变换等,是基础题.19、(Ⅰ);(Ⅱ)【解析】
(I)根据,利用二倍角公式得到,再由辅助角公式得到,然后根据正弦函数的性质求解.(Ⅱ)根据(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【详解】(I)因为,所以,,,或,或,因为,所以所以;(Ⅱ)由余弦定理得:,所以,所以,当且仅当取等号,又因为,所以,所以【点睛】本题主要考查二倍角公式,辅助角公式以及余弦定理,还考查了运算求解的能力,属于中档题.20、(1)(2)三个零点【解析】
(1)由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.【详解】(1)由得,由题意知恒成立,即,设,,时,递减,时,,递增;故,即,故的取值范围是.(2)当时,单调,无极值;当时,,一方面,,且在递减,所以在区间有一个零点.另一方面,,设,则,从而在递增,则,即,又在递增,所以在区间有一个零点.因此,当时在和各有一个零点,将这两个零点记为,,当时,即;当时,即;当时,即:从而在递增,在递减,在递增;于是是函数的极大值点,是函数的极小值点.下面证明:,由得,即,由得,令,则,①当时,递减,则,而,故;②当时,递减,则,而,故;一方面,因为,又,且在递增,所以在上有一个零点,即在上有一个零点.另一方面,根据得,则有:,又,且在递增,故在上有一个零点,故在上有一个零点.又,故有三个零点.【点睛】本题考查函数的零点,导数的综合应用.在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.21、(1);(2)不能,理由见解析【解析】
(1)设,则,由此即可求出椭圆方程;(2)设直线的方程为,联立直线与椭圆的方程可求得,则直线斜率为,设其方程为,联立直线与椭圆方程,结合韦达定理可得关于对称,可求得,假设存在直线满足题意,设,可得,由此可得答案.【详解】解:(1)设,则,,所以椭圆方程为;(2)设直线的方程为,与联立得,∴,因为两直线的倾斜角互补,所以直线斜率为,设直线的方程为,联立整理得,,所以关于对称,由正弦定理得,因为,所以,由上得,假设存在直线满足题意,设,按某种排列成等比数列,设公比为,则,所以,则此时直线与平行或重合,与题意不符,所以不存在满足题意的直线.【点睛】本题主要考查直线与椭圆的位置关系,考查计算能力与推理能力,属于难题.22、(1)(2)【解析】
(1)根据单调递减可知导函数恒小于等于,采用参变分离的方法分离出,并将的部分构造成新函数,分析与最值之间的关系;(2)通过对的导函数分析,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铁矿设备买卖合同
- 2025隧道施工合同
- 2025年湘教版九年级历史下册阶段测试试卷
- 钢结构劳务分包合同正规范本
- 车辆租赁简单合同协议书
- 2025年苏教新版高二生物上册阶段测试试卷
- 2025年外研版三年级起点九年级历史下册月考试卷含答案
- 电子政务系统开发合同
- 材料采购合同范本
- 二手房买卖合同示范文本范本
- 骨科抗菌药物应用分析报告
- 中职安全管理方案
- 百词斩托福词汇excel版本
- 高考写作指导常见议论文论证方法知识梳理与举例解析课件27张
- (完整word版)高中英语3500词汇表
- 玻璃反应釜安全操作及保养规程
- 高中英语新课标词汇表(附词组)
- 证券公司信用风险和操作风险管理理论和实践中金公司
- 一级建造师继续教育最全题库及答案(新)
- 2022年高考湖南卷生物试题(含答案解析)
- GB/T 20909-2007钢门窗
评论
0/150
提交评论