版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,,,则a,b,c的大小关系是()A. B. C. D.2.已知,则不等式的解集是()A. B. C. D.3.在中所对的边分别是,若,则()A.37 B.13 C. D.4.已知双曲线的右焦点为为坐标原点,以为直径的圆与双曲线的一条渐近线交于点及点,则双曲线的方程为()A. B. C. D.5.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件6.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,7.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A. B. C.2 D.8.已知数列是公差为的等差数列,且成等比数列,则()A.4 B.3 C.2 D.19.设函数恰有两个极值点,则实数的取值范围是()A. B.C. D.10.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.23 B.21 C.35 D.3211.已知角的终边经过点,则A. B.C. D.12.已知为虚数单位,复数,则其共轭复数()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项满足,则______.14.能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是________.15.如果抛物线上一点到准线的距离是6,那么______.16.的展开式中,若的奇数次幂的项的系数之和为32,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,,.(1)求的值;(2)求的值.18.(12分)设为等差数列的前项和,且,.(1)求数列的通项公式;(2)若满足不等式的正整数恰有个,求正实数的取值范围.19.(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.20.(12分)已知函数,其中.(Ⅰ)若,求函数的单调区间;(Ⅱ)设.若在上恒成立,求实数的最大值.21.(12分)某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:亮灯时长/频数1020402010以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.(1)试估计的值;(2)设表示这10000盏灯在某一时刻亮灯的数目.①求的数学期望和方差;②若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).附:①某盏灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;②若,则,,.22.(10分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.【题目详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:.【答案点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.2、A【答案解析】
构造函数,通过分析的单调性和对称性,求得不等式的解集.【题目详解】构造函数,是单调递增函数,且向左移动一个单位得到,的定义域为,且,所以为奇函数,图像关于原点对称,所以图像关于对称.不等式等价于,等价于,注意到,结合图像关于对称和单调递增可知.所以不等式的解集是.故选:A【答案点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.3、D【答案解析】
直接根据余弦定理求解即可.【题目详解】解:∵,∴,∴,故选:D.【答案点睛】本题主要考查余弦定理解三角形,属于基础题.4、C【答案解析】
根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.【题目详解】由双曲线,则渐近线方程:,,连接,则,解得,所以,解得.故双曲线方程为.故选:C【答案点睛】本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.5、D【答案解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【题目详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【答案点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.6、D【答案解析】
由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【题目详解】由函数图象可知:,函数的图象过点,,则故选【答案点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果7、B【答案解析】
求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【题目详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【答案点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.8、A【答案解析】
根据等差数列和等比数列公式直接计算得到答案.【题目详解】由成等比数列得,即,已知,解得.故选:.【答案点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.9、C【答案解析】
恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【题目详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【答案点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.10、B【答案解析】
根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【题目详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.故选:B【答案点睛】本小题主要考查随机数表法进行抽样,属于基础题.11、D【答案解析】因为角的终边经过点,所以,则,即.故选D.12、B【答案解析】
先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【题目详解】由,所以其共轭复数.故选:B.【答案点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法.【题目详解】∵①,∴时,②,①-②得,∴,又,∴().故答案为:.【答案点睛】本题考查求数列通项公式,由已知条件.类比已知求的解题方法求解.14、答案不唯一,如【答案解析】
根据对基本函数的理解可得到满足条件的函数.【题目详解】由题意,不妨设,则在都成立,但是在是单调递增的,在是单调递减的,说明原命题是假命题.所以本题答案为,答案不唯一,符合条件即可.【答案点睛】本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.15、【答案解析】
先求出抛物线的准线方程,然后根据点到准线的距离为6,列出,直接求出结果.【题目详解】抛物线的准线方程为,由题意得,解得.∵点在抛物线上,∴,∴,故答案为:.【答案点睛】本小题主要考查抛物线的定义,属于基础题.16、【答案解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【答案解析】
(1)先利用同角的三角函数关系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【题目详解】解:(1)因为,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因为且,即,解得,因为,所以,所以,所以,所以【答案点睛】本题考查已知三角函数值求值,考查三角函数的化简,考查和角公式,二倍角公式,同角的三角函数关系的应用,考查运算能力.18、(1);(2).【答案解析】
(1)设等差数列的公差为,根据题意得出关于和的方程组,解出这两个量的值,然后利用等差数列的通项公式可得出数列的通项公式;(2)求出,可得出,可知当为奇数时不等式不成立,只考虑为偶数的情况,利用数列单调性的定义判断数列中偶数项构成的数列的单调性,由此能求出正实数的取值范围.【题目详解】(1)设等差数列的公差为,则,整理得,解得,,因此,;(2),满足不等式的正整数恰有个,得,由于,若为奇数,则不等式不可能成立.只考虑为偶数的情况,令,则,..当时,,则;当时,,则;当时,,则.所以,,又,,,,.因此,实数的取值范围是.【答案点睛】本题考查数列的通项公式的求法,考查正实数的取值范围的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题.19、(1);(2)不存在,理由见解析【答案解析】
(1)写出,根据,斜率乘积为-1,建立等量关系求解离心率;(2)写出直线AB的方程,根据韦达定理求出点B的坐标,计算出弦长,根据垂直关系同理可得,利用等式即可得解.【题目详解】(1)由题可得,过点作直线交椭圆于点,且,直线交轴于点.点为椭圆的右顶点时,的坐标为,即,,化简得:,即,解得或(舍去),所以;(2)椭圆的方程为,由(1)可得,联立得:,设B的横坐标,根据韦达定理,即,,所以,同理可得若存在使得成立,则,化简得:,,此方程无解,所以不存在使得成立.【答案点睛】此题考查求椭圆离心率,根据直线与椭圆的位置关系解决弦长问题,关键在于熟练掌握解析几何常用方法,尤其是韦达定理在解决解析几何问题中的应用.20、(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).【答案解析】
(Ⅰ)求出函数的定义域以及导数,利用导数可求出该函数的单调递增区间和单调递减区间;(Ⅱ)由题意可知在上恒成立,分和两种情况讨论,在时,构造函数,利用导数证明出在上恒成立;在时,经过分析得出,然后构造函数,利用导数证明出在上恒成立,由此得出,进而可得出实数的最大值.【题目详解】(Ⅰ)函数的定义域为.当时,.令,解得(舍去),.当时,,所以,函数在上单调递减;当时,,所以,函数在上单调递增.因此,函数的单调递减区间为,单调递增区间为;(Ⅱ)由题意,可知在上恒成立.(i)若,,,,构造函数,,则,,,.又,在上恒成立.所以,函数在上单调递增,当时,在上恒成立.(ii)若,构造函数,.,所以,函数在上单调递增.恒成立,即,,即.由题意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,当,即时,函数在上单调递减,,不合题意,,即.此时构造函数,.,,,,恒成立,所以,函数在上单调递增,恒成立.综上,实数的最大值为【答案点睛】本题考查利用导数求解函数的单调区间,同时也考查了利用导数研究函数不等式恒成立问题,本题的难点在于不断构造新函数来求解,考查推理能力与运算求解能力,属于难题.21、(1)(2)①,,②72【答案解析】
(1)将每组数据的组中值乘
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西财经大学华商学院《自然资源生态学》2023-2024学年第一学期期末试卷
- 山东中医药高等专科学校《软件工程Ⅰ》2023-2024学年第一学期期末试卷
- 2023年药盒项目融资计划书
- 医疗服务价格年终总结
- 房租中介回收合同范例
- 市政景观工程合同范例
- 幼儿园防火意识培训
- 信息软件服务合同范例
- 山东药品食品职业学院《计算机文化基础》2023-2024学年第一学期期末试卷
- 公司采购鲜花合同范例
- 交流变换为直流的稳定电源设计方案
- PR6C系列数控液压板料折弯机 使用说明书
- 钢结构工程环境保护和文明施工措施
- 物业管理业主意见征询表
- 中药分类大全
- 精文减会经验交流材料
- 管道定额价目表
- 民国文献《潮州茶经》
- 220千伏线路工程深基坑开挖方案(实施版)
- 真崎航の21部
- 学校诗教工作计划
评论
0/150
提交评论