浙江省宁波效实中学2023学年高三下学期第一次联考数学试卷(含解析)_第1页
浙江省宁波效实中学2023学年高三下学期第一次联考数学试卷(含解析)_第2页
浙江省宁波效实中学2023学年高三下学期第一次联考数学试卷(含解析)_第3页
浙江省宁波效实中学2023学年高三下学期第一次联考数学试卷(含解析)_第4页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是()A. B. C. D.2.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为()A. B. C. D.3.若,则函数在区间内单调递增的概率是()A.B.C.D.4.函数f(x)=的图象大致为()A. B.C. D.5.设等比数列的前项和为,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B.C. D.7.己知全集为实数集R,集合A={x|x2+2x-8>0},B={x|log2x<1},则等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)8.若复数满足(是虚数单位),则()A. B. C. D.9.设,满足,则的取值范围是()A. B. C. D.10.已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是().A. B. C. D.11.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.176412.已知实数,满足约束条件,则目标函数的最小值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为__________.14.在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8.则该农作物的年平均产量是______吨.15.已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是16.已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.组别分组频数频率1234①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);②若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.18.(12分)己知,,.(1)求证:;(2)若,求证:.19.(12分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.20.(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,(Ⅰ)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(Ⅱ)商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)(ⅰ)求的分布列;(ⅱ)若,求的数学期望的最大值.21.(12分)已知函数.(Ⅰ)已知是的一个极值点,求曲线在处的切线方程(Ⅱ)讨论关于的方程根的个数.22.(10分)已知点是抛物线的顶点,,是上的两个动点,且.(1)判断点是否在直线上?说明理由;(2)设点是△的外接圆的圆心,点到轴的距离为,点,求的最大值.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B.2、B【答案解析】

延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【题目详解】解:延长到,使,连接,则四边形为平行四边形,则,,,在中,则,得,.故选:B.【答案点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.3、B【答案解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.4、D【答案解析】

根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【题目详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【答案点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.5、C【答案解析】

根据等比数列的前项和公式,判断出正确选项.【题目详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【答案点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.6、B【答案解析】

甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.7、D【答案解析】

求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【题目详解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

则,

∴.

故选:D.【答案点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.8、B【答案解析】

利用复数乘法运算化简,由此求得.【题目详解】依题意,所以.故选:B【答案点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.9、C【答案解析】

首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【题目详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【答案点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.10、B【答案解析】

先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.【题目详解】由题意,双曲线的一条渐近线方程为,即,∵是直线上任意一点,则直线与直线的距离,∵圆与双曲线的右支没有公共点,则,∴,即,又故的取值范围为,故选:B.【答案点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.11、A【答案解析】

根据题目所给的步骤进行计算,由此求得的值.【题目详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【答案点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.12、B【答案解析】

作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.【题目详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时.故选B.【答案点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】

先根据椭圆得出焦距,结合椭圆的定义求出,结合双曲线的定义求出双曲线的实半轴,最后利用离心率的公式求出离心率即可.【题目详解】解:因为椭圆,则焦点为,又因为椭圆与双曲线(,)有相同的焦点,椭圆与双曲线在第一象限内的交点为,且,在椭圆中:由椭圆的定义:在双曲线中:,所以双曲线的实轴长为:,实半轴为则双曲线的离心率为:.故答案为:【答案点睛】本题主要考查椭圆与双曲线的定义,考查离心率的求解,利用定义解决综合问题.14、10【答案解析】

根据已知数据直接计算即得.【题目详解】由题得,.故答案为:10【答案点睛】本题考查求平均数,是基础题.15、【答案解析】

通过设出A点坐标,可得C点坐标,通过∥轴,可得B点坐标,于是再利用可得答案.【题目详解】根据题意,可设点,则,由于∥轴,故,代入,可得,即,由于在线段上,故,即,解得.16、【答案解析】

由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【题目详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【答案点睛】考查圆柱的轴截面和其体积的求法,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①82,②分布列见解析,【答案解析】

(1)从20人中任取3人共有种结果,恰有1人成绩“优秀”共有种结果,利用古典概型的概率计算公式计算即可;(2)①平均数的估计值为各小矩形的组中值与其面积乘积的和;②要注意服从的是二项分布,不是超几何分布,利用二项分布的分布列及期望公式求解即可.【题目详解】(1)设从20人中任取3人恰有1人成绩“优秀”为事件,则,所以,恰有1人“优秀”的概率为.(2)组别分组频数频率120.01260.03380.04440.02①,估计所有员工的平均分为82②的可能取值为0、1、2、3,随机选取1人是“优秀”的概率为,∴;;;;∴的分布列为0123∵,∴数学期望.【答案点睛】本题考查古典概型的概率计算以及二项分布期望的问题,涉及到频率分布直方图、平均数的估计值等知识,是一道容易题.18、(1)证明见解析(2)证明见解析【答案解析】

(1)采用分析法论证,要证,分式化整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【题目详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,,当且仅当时等号成立.将上面四式相加,可得,即.【答案点睛】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题..19、(1)见解析;(2)证明见解析.【答案解析】

当时,求函数的导数,判断导函数的单调性,计算即为导函数的零点;

当时,分类讨论x的范围,可令新函数,计算新函数的最值可证明.【题目详解】(1)的定义域为当时,,,易知为上的增函数,又,所以是的唯一零点;(2)证明:当时,,①若,则,所以成立,②若,设,则,令,则,因为,所以,从而在上单调递增,所以,即,在上单调递增;所以,即,故.【答案点睛】本题主要考查导数法研究函数的单调性,单调性,零点的求法.注意分类讨论和构造新函数求函数的最值的应用.20、(Ⅰ)0.288(Ⅱ)(ⅰ)见解析(ⅱ)数学期望的最大值为280【答案解析】

(Ⅰ)根据题意,设购买该商品的3位顾客中,选择分2期付款的人数为,由独立重复事件的特点得出,利用二项分布的概率公式,即可求出结果;(Ⅱ)(ⅰ)依题意,的取值为200,250,300,350,400,根据离散型分布求出概率和的分布列;(ⅱ)由题意知,,解得,根据的分布列,得出的数学期望,结合,即可算出的最大值.【题目详解】解:(Ⅰ)设购买该商品的3位顾客中,选择分2期付款的人数为,则,则,故购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.(Ⅱ)(ⅰ)依题意,的取值为200,250,300,350,400,,,,,的分布列为:2002503003504000.16(ⅱ),由题意知,,,,,又,即,解得,,,当时,的最大值为280,所以的数学期望的最大值为280.【答案点睛】本题考查独立重复事件和二项分布的应用,以及离散型分布列和数学期望,考查计算能力.21、(Ⅰ);(Ⅱ)见解析【答案解析】

(Ⅰ)求函数的导数,利用x=2是f(x)的一个极值点,得f'(2)=0建立方程求出a的值,结合导数的几何意义进行求解即可;(Ⅱ)利用参数法分离法得到,构造函数求出函数的导数研究函数的单调性和最值,利用数形结合转化为图象交点个数进行求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论