版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE求展开式中的特定项求展开式中的特定项知识内容知识内容1.二项式定理⑴二项式定理这个公式表示的定理叫做二项式定理.⑵二项式系数、二项式的通项叫做的二项展开式,其中的系数叫做二项式系数,式中的叫做二项展开式的通项,用表示,即通项为展开式的第项:.⑶二项式展开式的各项幂指数二项式的展开式项数为项,各项的幂指数状况是①各项的次数都等于二项式的幂指数.②字母的按降幂排列,从第一项开始,次数由逐项减1直到零,字母按升幂排列,从第一项起,次数由零逐项增1直到.⑷几点注意①通项是的展开式的第项,这里.②二项式的项和的展开式的第项是有区别的,应用二项式定理时,其中的和是不能随便交换的.③注意二项式系数()与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是这个标准形式下而言的,如的二项展开式的通项公式是(只须把看成代入二项式定理)这与是不同的,在这里对应项的二项式系数是相等的都是,但项的系数一个是,一个是,可看出,二项式系数与项的系数是不同的概念.⑤设,则得公式:.⑥通项是中含有五个元素,只要知道其中四个即可求第五个元素.⑦当不是很大,比较小时可以用展开式的前几项求的近似值.2.二项式系数的性质⑴杨辉三角形:对于是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.”⑵二项式系数的性质:展开式的二项式系数是:,从函数的角度看可以看成是为自变量的函数,其定义域是:.当时,的图象为下图:这样我们利用“杨辉三角”和时的图象的直观来帮助我们研究二项式系数的性质.①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.由于展开式各项的二项式系数顺次是,,...,,,...,.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当依次取1,2,3,…等值时,的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间.当是偶数时,是奇数,展开式共有项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为.当是奇数时,是偶数,展开式共有项,所以有中间两项.这两项的二项式系数相等并且最大,最大为.③二项式系数的和为,即.④奇数项的二项式系数的和等于偶数项的二项式系数的和,即.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.典例分析典例分析二项展开式2求展开式中的特定项(常数项,有理项,系数最大项等.)常数项在展开式中,系数为有理数的项共有项.的展开式中共有_____项是有理项.展开式中的常数项为_______(用数字作答).的展开式中的常数项为_________.二项式的展开式中的常数项为_____________,展开式中各项系数和为.(用数字作答)若的展开式中的常数项为,则实数___________.在二项式的展开式中,的系数是,则实数的值为.在的展开式中,常数项是______.(结果用数值表示)如果展开式中,第四项与第六项的系数相等,则,展开式中的常数项的值等于.的展开式中常数项为(用数字作答)若展开式的二项式系数之和为64,则展开式的常数项为_______(用数字作答).若的展开式中含有常数项,则最小的正整数等于.在的二项展开式中,若常数项为,则等于(用数字作答)的展开式中,常数项为15,则.已知的展开式中没有常数项,,且,则______.展开式中的常数项为_______(用数字作答).已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是(用数字作答)已知,若的展开式中含有常数项,则这样的有()A.3个B.2C.1D.0展开式中的常数项为_______(用数字作答).的展开式中整理后的常数项为(用数字作答).的展开式中常数项为(用数字作答)已知的展开式的常数项是第项,则的值为()A. B. C. D.在的二项展开式中,若常数项为,则等于(用数字作答)的展开式中,常数项为15,则.展开式中的常数项为_______(用数字作答).已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是(用数字作答)已知,若的展开式中含有常数项,则这样的有()A.3个B.2C.1D.0展开式中的常数项为()A. B. C. D.求展开式中的常数项.的展开式的常数项是(用数字作答)在的二项展开式中,若常数项为,则等于()A.
B.
C.
D.的展开式中的第项为常数项,那么正整数的值是.若的展开式中存在常数项,则的值可以是()A.B.C.D.在的展开式中常数项是,中间项是.已知的展开式中没有常数项,,且,则______.若的展开式中含有常数项,则最小的正整数等于.已知的展开式中第三项与第五项的系数之比为,则展开式中常数项是()A.
B.
C.
D.若展开式中的二项式系数和为,则等于________;该展开式中的常数项为_________.若的展开式中常数项为,则_____,其展开式中二项式系数之和为_________.若展开式的二项式系数之和为64,则展开式的常数项为()A. B. C. D.有理项求二项式的展开式中:⑴常数项;⑵有几个有理项(只需求出个数即可);⑶有几个整式项(只需求出个数即可).的展开式中共有_______项是有理项.二项式的展开式中:⑴求常数项;⑵有几个有理项;⑶有几个整式项.已知在的展开式中,前三项的系数成等差数列①求;②求展开式中的有理项.二项展开式中,有理项的项数是()A.B.C.D.在的展开式中任取一项,设所取项为有理项的概率为,则A.1B.C.D.的展开式中,含的正整数次幂的项共有()A.项 B.项 C.项 D.项若(,为有理数),则()A. B. C. D.系数最大的项已知的展开式中前三项的系数成等差数列.⑴求的值;⑵求展开式中系数最大的项.展开式中系数最大的项是第几项?已知的展开式中,末三项的二项式系数的和等于,求展开式中系数最大的项.在的展开式中,只有第5项的二项式系数最大,则展开式中常数项是____.A. B. C.D.已知的展开式中,二项式系数最大的项的值等于,求.求的展开式中,系数绝对值最大的项以及系数最大的项.已知展开式中的倒数第三项的系数为,求:⑴含的项;⑵系数最大的项.设,,的展开式中,的系数为.⑴求展开式中的系数的最大、最小值;⑵对于使中的系数取最小值时的、的值,求的系数.已知:的展开式中,各项系数和比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《非暴力沟通》读书笔记
- 《维多利亚时期室内》课件
- 甘肃省天水市成纪中学等多校2024-2025学年七年级上学期期中考试语文试卷
- 山东省齐河县安头乡中学2024-2025学年上学期九年级英语期中测试题
- 2022年江苏省公务员录用考试《行测》真题(C类)及答案解析
- 2022年公务员多省联考《申论》真题(宁夏A卷)及答案解析
- 《物联网技术基础》课件
- 2024年新高一物理初升高衔接《速度变化的描述》含答案解析
- 【语文课件】古诗词游乐园课件
- 治疗呼吸系统疾病的医疗器械和设备市场发展预测和趋势分析
- 髂动脉溃疡的健康宣教
- TS16949体系过程审核检查表
- KPI考核表-品质部
- 预应力钢绞线张拉伸长量计算程序
- 谈心谈话记录100条范文(6篇)
- 头痛的国际分类(第三版)中文
- 《Python从入门到数据分析应用》 思政课件 第1章 初识Python
- 动画场景设计1课件
- 幼儿园教学课件语言教育《雪地里的小画家》
- ESG引领下的西部城市再出发-新型城市竞争力策略研究白皮书
- 初中美术-美术是个大家族教学设计学情分析教材分析课后反思
评论
0/150
提交评论