广东省颜锡祺中学2022年数学高三上期末联考试题含解析_第1页
广东省颜锡祺中学2022年数学高三上期末联考试题含解析_第2页
广东省颜锡祺中学2022年数学高三上期末联考试题含解析_第3页
广东省颜锡祺中学2022年数学高三上期末联考试题含解析_第4页
广东省颜锡祺中学2022年数学高三上期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}2.已知等比数列满足,,则()A. B. C. D.3.在直角中,,,,若,则()A. B. C. D.4.双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为()A. B. C. D.5.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96 B.84 C.120 D.3606.已知满足,则()A. B. C. D.7.如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为()A. B. C. D.8.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()A. B. C. D.9.在中,角、、所对的边分别为、、,若,则()A. B. C. D.10.已知双曲线()的渐近线方程为,则()A. B. C. D.11.已知数列的前n项和为,,且对于任意,满足,则()A. B. C. D.12.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆C:1(a>b>0)的左、右焦点分别为F1,F2,椭圆的焦距为2c,过C外一点P(c,2c)作线段PF1,PF2分别交椭圆C于点A、B,若|PA|=|AF1|,则_____.14.从甲、乙、丙、丁、戊五人中任选两名代表,甲被选中的概率为__________.15.抛物线的焦点坐标为______.16.已知数列中,为其前项和,,,则_________,_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)若函数有两个极值点,求证:.18.(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.19.(12分)设函数,,(Ⅰ)求曲线在点(1,0)处的切线方程;(Ⅱ)求函数在区间上的取值范围.20.(12分)已知函数,设为的导数,.(1)求,;(2)猜想的表达式,并证明你的结论.21.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.22.(10分)在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点满足.(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

按补集、交集定义,即可求解.【详解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故选:B.【点睛】本题考查集合间的运算,属于基础题.2、B【解析】由a1+a3+a5=21得a3+a5+a7=,选B.3、C【解析】

在直角三角形ABC中,求得,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.【详解】在直角中,,,,,

若,则故选C.【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.4、A【解析】

根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.5、B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.6、A【解析】

利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.7、B【解析】

根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积.【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B.【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.8、C【解析】

化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由得可判断④.【详解】由题意,,所以,故①正确;为偶函数,故②错误;当时,,单调递减,故③正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故④正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.9、D【解析】

利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.10、A【解析】

根据双曲线方程(),确定焦点位置,再根据渐近线方程得到求解.【详解】因为双曲线(),所以,又因为渐近线方程为,所以,所以.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.11、D【解析】

利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可.【详解】当时,.所以数列从第2项起为等差数列,,所以,,.,,.故选:.【点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题.12、B【解析】

三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为.故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据条件可得判断OA∥PF2,且|PF2|=2|OA|,从而得到点A为椭圆上顶点,则有b=c,解出B的坐标即可得到比值.【详解】因为|PA|=|AF1|,所以点A是线段PF1的中点,又因为点O为线段F1F2的中点,所以OA∥PF2,且|PF2|=2|OA|,因为点P(c,2c),所以PF2⊥x轴,则|PF2|=2c,所以OA⊥x轴,则点A为椭圆上顶点,所以|OA|=b,则2b=2c,所以b=c,ac,设B(c,m)(m>0),则,解得mc,所以|BF2|c,则.故答案为:2.【点睛】本题考查椭圆的基本性质,考查直线位置关系的判断,方程思想,属于中档题.14、【解析】

甲被选中,只需从乙、丙、丁、戊中,再选一人即有种方法,从甲、乙、丙、丁、戊五人中任选两名共有种方法,根据公式即可求得概率.【详解】甲被选中,只需从乙、丙、丁、戊中,再选一人即有种方法,从甲、乙、丙、丁、戊五人中任选两名共有种方法,.故答案为:.【点睛】本题考查古典概型的概率的计算,考查学生分析问题的能力,难度容易.15、【解析】

变换得到,计算焦点得到答案.【详解】抛物线的标准方程为,,所以焦点坐标为.故答案为:【点睛】本题考查了抛物线的焦点坐标,属于简单题.16、8(写为也得分)【解析】

由,得,.当时,,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)见解析【解析】

(Ⅰ)求导得到,讨论,,三种情况得到单调区间.(Ⅱ)设,要证,即证,,设,根据函数单调性得到证明.【详解】(Ⅰ),令,,(1)当,即时,,,在上单调递增;(2)当,即时,设的两根为(),,①若,,时,,所以在和上单调递增,时,,所以在上单调递减,②若,,时,,所以在上单调递减,时,,所以在上单调递增.综上,当时,在上单调递增;当时,在和上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(Ⅱ)不妨设,要证,即证,即证,由(Ⅰ)可知,,,可得,,所以有,令,,所以在单调递增,所以,因为,所以,所以.【点睛】本题考查了函数单调性,证明不等式,意在考查学生的分类讨论能力和计算能力.18、(1)(2)【解析】

(1)把代入,利用零点分段讨论法求解;(2)对任意成立转化为求的最小值可得.【详解】解:(1)当时,不等式可化为.讨论:①当时,,所以,所以;②当时,,所以,所以;③当时,,所以,所以.综上,当时,不等式的解集为.(2)因为,所以.又因为,对任意成立,所以,所以或.故实数的取值范围为.【点睛】本题主要考查含有绝对值不等式的解法及恒成立问题,恒成立问题一般是转化为最值问题求解,侧重考查数学建模和数学运算的核心素养.19、(1)(2)【解析】分析:(1)先断定在曲线上,从而需要求,令,求得结果,注意复合函数求导法则,接着应用点斜式写出直线的方程;(2)先将函数解析式求出,之后借助于导数研究函数的单调性,从而求得函数在相应区间上的最值.详解:(Ⅰ)当,.,当,,所以切线方程为.(Ⅱ),,因为,所以.令,,则在单调递减,因为,所以在上增,在单调递增.,,因为,所以在区间上的值域为.点睛:该题考查的是有关应用导数研究函数的问题,涉及到的知识点有导数的几何意义,曲线在某个点处的切线方程的求法,复合函数求导,函数在给定区间上的最值等,在解题的过程中,需要对公式的正确使用.20、,;,证明见解析【解析】

对函数进行求导,并通过三角恒等变换进行转化求得的表达式,对函数再进行求导并通过三角恒等变换进行转化求得的表达式;根据中,的表达式进行归纳猜想,再利用数学归纳法证明即可.【详解】(1),其中,[,其中,(2)猜想,下面用数学归纳法证明:①当时,成立,②假设时,猜想成立即当时,当时,猜想成立由①②对成立【点睛】本题考查导数及其应用、三角恒等变换、归纳与猜想和数学归纳法;考查学生的逻辑推理能力和运算求解能力;熟练掌握用数学归纳法进行证明的步骤是求解本题的关键;属于中档题.21、(1);(2).【解析】

(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.【详解】解:(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论