2023届江苏省镇江市丹阳三中学九年级数学上册期末统考模拟试题含解析_第1页
2023届江苏省镇江市丹阳三中学九年级数学上册期末统考模拟试题含解析_第2页
2023届江苏省镇江市丹阳三中学九年级数学上册期末统考模拟试题含解析_第3页
2023届江苏省镇江市丹阳三中学九年级数学上册期末统考模拟试题含解析_第4页
2023届江苏省镇江市丹阳三中学九年级数学上册期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.关于x的一元二次方程x2+bx+c=0的两个实数根分别为﹣2和3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6C.b=5,c=﹣6 D.b=﹣1,c=62.如图1,E为矩形ABCD边AD上一点,点P从点C沿折线CD﹣DE﹣EB运动到点B时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=8cmB.sin∠EBC=C.当10≤t≤12时,D.当t=12s时,△PBQ是等腰三角形3.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)5.关于抛物线,下列说法错误的是A.开口向上 B.对称轴是y轴C.函数有最大值 D.当x>0时,函数y随x的增大而增大6.如果点在双曲线上,那么m的值是()A. B. C. D.7.已知(x2+y2)(x2+y2-1)-6=0,则x2+y2的值是()A.3或-2 B.-3或2 C.3 D.-28.如图,中,点,分别是边,上的点,,点是边上的一点,连接交线段于点,且,,,则S四边形BCED()A. B. C. D.9.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.① B.② C.③ D.④10.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5 B.10 C.20 D.4011.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150° B.140° C.130° D.120°12.给出下列四个函数:①y=﹣x;②y=x;③y=;④y=x1.x<0时,y随x的增大而减小的函数有()A.1个 B.1个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为_____.14.如图,直线交轴于点B,交轴于点C,以BC为边的正方形ABCD的顶点A(-1,a)在双曲线上,D点在双曲线上,则的值为_______.15.如图,点B,A,C,D在⊙O上,OA⊥BC,∠AOB=50°,则∠ADC=.16.在Rt△ABC中,∠C=90°,如果tan∠A=,那么cos∠B=_____.17.如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为_____.18.二次函数的解析式为,顶点坐标是__________.三、解答题(共78分)19.(8分)请用学过的方法研究一类新函数(为常数,)的图象和性质.(1)在给出的平面直角坐标系中画出函数的图象;(2)对于函数,当自变量的值增大时,函数值怎样变化?20.(8分)如图,△ABC中,AB=AC=10,BC=6,求sinB的值.21.(8分)(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+;(2)解一元二次方程:3x2=5x﹣222.(10分)如图,在圆中,弦,点在圆上(与,不重合),联结、,过点分别作,,垂足分别是点、.(1)求线段的长;(2)点到的距离为3,求圆的半径.23.(10分)定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数(x0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.24.(10分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?25.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.26.如图,在△ABC中,CD⊥AB,垂足为点D.若AB=12,CD=6,tanA=,求sinB+cosB的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据一元二次方程根与系数的关系得到﹣2+3=﹣b,﹣2×3=c,即可得到b与c的值.【详解】由一元二次方程根与系数的关系得:﹣2+3=﹣b,﹣2×3=c,∴b=﹣1,c=﹣6故选:B.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0的两个根满足,是解题的关键.2、D【分析】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,然后结合三角函数、三角形的面积等逐一进行判断即可得.【详解】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,∵AD=BC,∴AD=12,∴AE=12﹣4=8cm,故A正确,在Rt△ABE中,∵AE=8,AB=CD=6,∴BE==10,∴sin∠EBC=sin∠AEB=,故B正确,当10≤t≤12时,点P在BE上,BP=10﹣(t﹣10)=20﹣t,∴S△BQP=•t•(20﹣t)•=﹣t2+6t,故C正确,如图,当t=12时,Q点与C点重合,点P在BE上,此时BP=20-12=8,过点P作PM⊥BC于M,在Rt△BPM中,cos∠PBM=,又∠PBM=∠AEB,在Rt△ABE中,cos∠AEB=,∴,∴BM=6.4,∴QM=12-6.4=5.6,∴BP≠PC,即△PBQ不是等腰三角形,故D错误,故选D.【点睛】本题考查动点问题的函数图象,涉及了矩形的性质,勾股定理,三角形函数,等腰三角形的判定等知识,综合性较强,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题.3、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【点睛】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.4、D【解析】解:点M(1,﹣2)与点N关于原点对称,点N的坐标为故选D.【点睛】本题考查关于原点对称的点坐标特征:横坐标和纵坐标都互为相反数.5、C【分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】A.因为a=2>0,所以开口向上,正确;B.对称轴是y轴,正确;C.当x=0时,函数有最小值0,错误;D.当x>0时,y随x增大而增大,正确;故选:C【点睛】考查二次函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.6、A【分析】将点代入解析式中,即可求出m的值.【详解】将点代入中,得:故选A.【点睛】此题考查的是根据点所在的图象求点的纵坐标,解决此题的关键是将点的坐标代入解析式即可.7、C【分析】设m=x2+y2,则有,求出m的值,结合x2+y20,即可得到答案.【详解】解:根据题意,设m=x2+y2,∴原方程可化为:,∴,解得:或;∵,∴,∴;故选:C.【点睛】本题考查了换元法求一元二次方程,解题的关键是熟练掌握解一元二次方程的方法和步骤.8、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形对应成比例可得,得到HC=5,再根据相似三角形的面积比等于相似比的平方可得,S△ABC=40.5,再减去△ADE的面积即可得到四边形BCED的面积.【详解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四边形BCED=S△ABC-S△ADE=40.5-18=22.5故答案选:B.【点睛】本题考查相似三角形的性质和判定.9、A【分析】根据题意得到原几何体的主视图,结合主视图选择.【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.10、B【分析】利用圆锥面积=计算.【详解】=,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.11、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.12、C【解析】解:当x<0时,①y=−x,③,④y随x的增大而减小;②y=x,y随x的增大而增大.故选C.二、填空题(每题4分,共24分)13、1【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB,∴OA+AB1+B1C2=++4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:1.故答案为:1.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.14、6【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【详解】∵A(−1,a)在反比例函数y=上,∴a=2,∴A(−1,2),∵点B在直线y=kx−1上,∴B(0,−1),∴AB=,∵四边形ABCD是正方形,∴BC=AB=,设B(m,0),∴,∴m=−3(舍)或m=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),将点D的坐标代入反比例函数y=中,∴k=6故答案为:6.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题突破口是确定出点A的坐标.15、25°【解析】解:∵OA⊥BC,∴,∴∠ADC=∠AOB=×50°=25°16、【分析】直接利用特殊角的三角函数值得出∠A=30°,进而得出∠B的度数,进而得出答案.【详解】∵tan∠A=,∴∠A=30°,∵∠C=90°,∴∠B=180°﹣30°﹣90°=60°,∴cos∠B=.故答案为:.【点睛】此题主要考查了特殊角的三角函数值,正确理解三角函数的计算公式是解题关键.17、【解析】根据旋转的性质可知△FGC的面积=△ABC的面积,观察图形可知阴影部分的面积就是扇形CAF的面积.【详解】解:由题意得,△FGC的面积=△ABC的面积,∠ACF=30º,AC=4,由图形可知,阴影部分的面积=△FGC的面积+扇形CAF的面积﹣△ABC的面积,∴阴影部分的面积=扇形CAF的面积=.故答案为:.【点睛】本题考查了旋转的性质,不规则图形及扇形的面积计算.18、【分析】由已知和抛物线的顶点式,直接判断顶点坐标.【详解】解:∵二次函数的解析式为:,∴二次函数图象的顶点坐标为:(-1,3).故答案为:(-1,3).【点睛】本题考查了抛物线的顶点坐标与抛物线解析式的关系,抛物线的顶点式:y=a(x-h)2+k,顶点坐标为(h,k).三、解答题(共78分)19、解:(1)画图像见解析;(2)①k>0时,当x<0,y随x增大而增大,x>0时,y随x增大而减小;②k<0时,当x<0,y随x增大而减小,x>0时,y随x增大而增大.【分析】(1)分两种情况,当x>0时,,当x<0时,,进而即可画出函数图象;(2)分两种情况k>0时,k<0时,分别写出函数的增减性,即可.【详解】∵当x>0时,,当x<0时,,∴函数的图象,如图所示:(2)①∵k>0时,函数的图象是在第一,二象限的双曲线,且关于y轴对称,∴k>0时,当x<0,y随x增大而增大,x>0时,y随x增大而减小;②∵k<0时,函数的图象是在第三,四象限的双曲线,且关于y轴对称,∴k<0时,当x<0,y随x增大而减小,x>0时,y随x增大而增大.综上所述:k>0时,当x<0,y随x增大而增大,x>0时,y随x增大而减小;k<0时,当x<0,y随x增大而减小,x>0时,y随x增大而增大.【点睛】本题主要考查用反比例函数的图象和性质研究新函数的图象和性质,掌握反比例函数的图象和性质,是解题的关键.20、【分析】过点A作于D,根据等腰三角形的三线合一性质求出根据勾股定理求出,最后用正弦的定义即可.【详解】解:过点A作于D,又∵△ABC中,AB=AC=10,BC=6,∴,.∴.【点睛】本题考查了等腰三角形的三线合一性质、勾股定理、锐角三角函数的定义,构造直角三角形是解题的关键.21、(1)﹣3+2;(2)=1,=.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用因式分解法解一元二次方程即可.【详解】解:(1)原式=1﹣1﹣3﹣3×+3=﹣3﹣+3=﹣3+;(2)∵3x2﹣5x+2=0,∴(x﹣1)(3x﹣2)=0,则x﹣1=0或3x﹣2=0,解得=1,=.【点睛】本题主要考查实数的混合运算及解一元二次方程,掌握实数的混合运算顺序和法则,因式分解法是解题的关键.22、(1);(2)圆的半径为1.【分析】(1)利用中位线定理得出,从而得出DE的长.(2)过点作,垂足为点,,联结,求解出AH的值,再利用勾股定理,求出圆的半径.【详解】解(1)∵经过圆心,∴同理:∴是的中位线∴∵∴(2)过点作,垂足为点,,联结∵经过圆心∴∵∴在中,∴即圆的半径为1.【点睛】本题考查了三角形的中位线定理以及勾股定理的运用,是较为典型的圆和三角形的例题.23、(1)见解析;(2);(3),P点坐标为或【分析】(1)由角平分线求出∠MOP=∠NOP=∠AOB=30°,再证出∠OMP=∠OPN,证明△MOP∽△PON,即可得出结论;(2)由∠MPN是∠AOB的“相关角”,判断出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出,由平行线得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,则S△MON=ON•MH=ON•OMsinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴,∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴,∵CHOB,∴△ACH∽△ABO,∴,∴∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:;综上所述:点P的坐标为:或.【点睛】本题考查反比例函数与几何综合,掌握数形结合和分类讨论的思想是解题的关键.24、饲养室的最大面积为75平方米【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,表示出总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75即可求得面积的最值【详解】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,/r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论