版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知:在△ABC中,∠A=78°,AB=4,AC=6,下列阴影部分的三角形与原△ABC不相似的是()A. B.C. D.2.如图所示的两个四边形相似,则α的度数是()A.60° B.75° C.87° D.120°3.一元二次方程的二次项系数、一次项系数和常数项分别是()A.3,2,1 B.3,2,-1 C.3,-2,1 D.3,-2,-14.抛物线y=(x-3)2+4的顶点坐标是()A.(-1,2)B.(-1,-2)C.(1,-2)D.(3,4)5.在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()A. B. C. D.6.二次函数的图象与轴的交点个数是()A.2个 B.1个 C.0个 D.不能确定7.如下所示的4组图形中,左边图形与右边图形成中心对称的有()A.1组 B.2组 C.3组 D.4组8.在反比例函数图像的每一条曲线上,y都随x的增大而增大,则b的取值范围是()A.b=3 B. C. D.9.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE重合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按逆时针方向旋转n°后(0<n<180),如果BA∥DE,那么n的值是()A.105 B.95 C.90 D.7510.已知圆锥的母线长为4,底面圆的半径为3,则此圆锥的侧面积是()A.6π B.9π C.12π D.16π11.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120°,其中正确的结论有()A.4个 B.3个 C.2个 D.1个12.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,) D.(2n+1,)二、填空题(每题4分,共24分)13.一组数据6,2,–1,5的极差为__________.14.如图,在中,,对角线,点E是线段BC上的动点,连接DE,过点D作DP⊥DE,在射线DP上取点F,使得,连接CF,则周长的最小值为___________.15.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=6cm,则线段BC=____cm.16.已知点P是正方形ABCD内部一点,且△PAB是正三角形,则∠CPD=_____度.17.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若=,则的值为_____.18.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.三、解答题(共78分)19.(8分)如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB,CD.(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径20.(8分)已知抛物线y=x2+mx+n与x轴交于点A(﹣1,0),B(2,0)两点.(1)求抛物线的解析式;(2)当y<0时,直接写出x的取值范围是.21.(8分)已知,且2x+3y﹣z=18,求4x+y﹣3z的值.22.(10分)如图1,已知平行四边形,是的角平分线,交于点.(1)求证:.(2)如图2所示,点是平行四边形的边所在直线上一点,若,且,,求的面积.23.(10分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.24.(10分)已知:如图,四边形ABCD是矩形,过点D作DF∥AC交BA的延长线于点F.(1)求证:四边形ACDF是平行四边形;(2)若AB=3,DF=5,求△AEC的面积.25.(12分)如图①,在中,,是边的中点,以点为圆心的圆经过点.(1)求证:与相切;(2)在图①中,若与相交于点,与相交于点,连接,,,如图②,则________.26.已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.(1)求证:△ABE∽△DEA;(2)若AB=4,求AE•DE的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.【点睛】本题主要考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.2、C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.3、D【解析】根据一元二次方程一般式的系数概念,即可得到答案.【详解】一元二次方程的二次项系数、一次项系数和常数项分别是:3,-2,-1,故选D.【点睛】本题主要考查一元二次方程一般式的系数概念,掌握一元二次方程一般式的系数,是解题的关键.4、D【解析】根据抛物线解析式y=(x-3)2+4,可直接写出顶点坐标.【详解】y=(x-3)2+4的顶点坐标是(3,4).故选D.【点睛】此题考查了二次函数y=a(x-h)2+k的性质,对于二次函数y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=k.5、A【解析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.6、A【分析】通过计算判别式的值可判断抛物线与轴的交点个数.【详解】由二次函数,
知
∴.∴抛物线与轴有二个公共点.
故选:A.【点睛】本题考查了二次函数与一元二次方程之间的关系,抛物线与轴的交点个数取决于的值.7、C【解析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.①②③是只是中心对称图形,④只是轴对称图形,故选C.考点:本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.8、C【分析】由反比例函数的图象的每一条曲线上,y都随x的增大而增大,可得3-b<0,进而求出答案,作出选择.【详解】解:∵反比例函数的图象的每一条曲线上,y都随x的增大而增大,∴3-b<0,∴b>3,故选C.【点睛】考查反比例函数的性质和一元一次不等式的解法,掌握反比例函数的性质是解决问题的关键.9、A【分析】画出图形求解即可.【详解】解:∵三角尺DEF绕着点F按逆时针方向旋转n°后(0<n<180),BA∥DE,∴旋转角=90°+45°﹣30°=105°,故选:A.【点睛】本题考查了旋转变换,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.10、C【分析】圆锥的侧面积就等于经母线长乘底面周长的一半.依此公式计算即可.【详解】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×4=12π,故选C.考点:圆锥的计算.11、A【详解】如图,连接CO,DO,∵MC与⊙O相切于点C,∴∠MCO=90°,在△MCO与△MDO中,,∴△MCO≌△MDO(SSS),∴∠MCO=∠MDO=90°,∠CMO=∠DMO,∴MD与⊙O相切,故①正确;在△ACM与△ADM中,,∴△ACM≌△ADM(SAS),∴AC=AD,∴MC=MD=AC=AD,∴四边形ACMD是菱形,故②正确;如图连接BC,∵AC=MC,∴∠CAB=∠CMO,又∵AB为⊙O的直径,∴∠ACB=90°,在△ACB与△MCO中,,∴△ACB≌△MCO(SAS),∴AB=MO,故③正确;∵△ACB≌△MCO,∴BC=OC,∴BC=OC=OB,∴∠COB=60°,∵∠MCO=90°,∴∠CMO=30°,又∵四边形ACMD是菱形,∴∠CMD=60°,∴∠ADM=120°,故④正确;故正确的有4个.故选A.12、C【解析】试题分析:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,An的纵坐标是,当n为偶数时,An的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选C.考点:坐标与图形变化-旋转.二、填空题(每题4分,共24分)13、7【解析】根据极差的定义,一组数据的最大值与最小值的差为极差,所以这组数据的极差是7,故答案为:7.14、【分析】过D作DG⊥BC于点G,过F作FH⊥DG于点H,利用tan∠DBC=和BD=10可求出DG和BG的长,然后求出CD的长,可知△DCF周长最小,即CF+DF最小,利用“一线三垂直”得到△HDF∽△GED,然后根据对应边成比例推出FH=2GD,可知F在DG右侧距离2DG的直线上,作C点关于直线的对称点C',连接DC',DC'的长即为CF+DF的最小值,利用勾股定理求出DC',则CD+DC'的长即为周长最小值.【详解】如图,过D作DG⊥BC于点G,过F作FH⊥DG于点H,∵tan∠DBC=,BD=10,设DG=x,BG=2x∴,解得∴DG=,BG=∴GC=BC-BG=∴CD=△DCF周长最小,即CF+DF最小∵∠FDE=90°∴∠HDF+∠GDE=90°∵∠GED+∠GDE=90°∴∠HDF=∠GED又∵∠DHF=∠EGD=90°∴△HDF∽△GED∴∴FH=2GD=即F在DG右侧距离的直线上运动,如图所示,作C点关于直线的对称点C',连接DC',DC'的长即为CF+DF的最小值∵DG⊥BC,FH⊥DG,FO⊥CC'∴四边形HFOG为矩形,∴OG=HF=又∵GC=∴OC=OC'=∴GC'=在Rt△DGC'中,DC'=∴△DCF周长的最小值=CD+DC'=故答案为:.【点睛】本题考查了利用正切值求边长,相似三角形的判定以及最短路径问题,解题的关键是作辅助线将三角形周长最小值转化为“将军饮马”模型.15、18【分析】根据已知图形构造相似三角形,进而得出,即可求得答案.【详解】如图所示:过点A作平行线的垂线,交点分别为D、E,可得:,∴,即,解得:,∴,故答案为:.【点睛】本题主要考查了相似三角形的应用,根据题意得出是解答本题的关键.16、1【解析】如图,先求出∠DAP=∠CBP=30°,由AP=AD=BP=BC,就可以求出∠PDC=∠PCD=15°,进而得出∠CPD的度数.【详解】解:如图,∵四边形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=90°,∵△ABP是等边三角形,∴AP=BP=AB,∠PAB=∠PBA=60°,∴AP=AD=BP=BC,∠DAP=∠CBP=30°.∴∠BCP=∠BPC=∠APD=∠ADP=75°,∴∠PDC=∠PCD=15°,∴∠CPD=180°﹣∠PDC﹣∠PCD=180°﹣15°﹣15°=1°.故答案为1.【点睛】本题考查了正方形的性质的运用,等边三角形的性质的运用,等腰三角形的性质的运用,解答时运用三角形内角和定理是关键.17、.【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分线,∴∠EBC=∠ABE=∠AFB,∴AB=AF,∴,∵AD∥BC,∴△AFE∽△CBE,∴,∴;故答案为:.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.18、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.三、解答题(共78分)19、(1)图见解析;(2)1.【分析】(1)由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC,BC的中垂线交于点O,则点O是弧ACB所在圆的圆心;(2)在Rt△OAD中,由勾股定理可求得半径OA的长.【详解】解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12cm,OD=(x-8)cm,则根据勾股定理列方程:x2=122+(x-8)2,解得:x=1.答:圆的半径为1cm.20、(1)y=x1﹣x﹣1;(1)﹣1<x<1.【分析】(1)利用待定系数法确定函数关系式;(1)结合函数图象解答.【详解】解:(1)把A(﹣1,0),B(1,0)分别代入y=x1+mx+n,得.解得.故该抛物线解析式是:y=x1﹣x﹣1;(1)由题意知,抛物线y=x1﹣x﹣1与x轴交于点A(﹣1,0),B(1,0)两点,且开口方向向上,所以当y<0时,x的取值范围是﹣1<x<1.故答案是:﹣1<x<1.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法求解析式.21、x=4,y=6,z=8.【分析】设=k,由1x+3y-z=18列出含k的等式,解出k,x,y,z,再代入所求即可.【详解】解:设=k,可得:x=1k,y=3k,z=4k,把x=1k,y=3k,z=4k代入1x+3y﹣z=18中,可得:4k+9k﹣4k=18,解得:k=1,所以x=4,y=6,z=8,把x=4,y=6,z=8代入4x+y﹣3z=16+6﹣14=﹣1.【点睛】本题考查的知识点是比例的性质,解题的关键是熟练的掌握比例的性质.22、(1)证明见解析;(2)【分析】(1)根据角平分线的定义结合两直线平行,内错角相等可得,然后利用等角对等边证明即可;(2)先证得为等腰三角形,设,,利用三角形内角和定理以及平行线性质定理证得,再利用同底等高的两个三角形面积相等即可求得答案.【详解】(1)平分,,又四边形是平行四边形,,,,;(2),,,为等腰三角形,设,,,,又,,,,即为直角三角形,四边形是平行四边形,,∴.【点睛】本题考查了平行四边形的性质,角平分线的定义,三角形内角和定理,等角对等边的性质,同底等高的两个三角形面积相等,证得为直角三角形是正确解答(2)的关键.23、(1)证明见解析;(2)【分析】(1)连接OE,BE,根据已知条件证明CD为⊙O的切线,然后再根据切线长定理即可证明DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,根据S阴影部分=S四边形BCEO﹣S扇形OBE,利用分割法即可求得阴影部分的面积.【详解】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4,∵CF==2,∴BC﹣AD=2,∴BC=3,在直角△OBC中,tan∠BOC==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°,∴S/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同变更协议范例
- 2024年度甲方提供乙方二零二四年度贷款担保的合同3篇
- 民用住房租房合同范本
- 2024至2030年中国香菇提取物行业投资前景及策略咨询研究报告
- 2024至2030年中国布制窗帘数据监测研究报告
- 2024至2030年食醋项目投资价值分析报告
- 2024至2030年镀镍琥珀色立方氮化硼项目投资价值分析报告
- 2024至2030年铜制艺术品项目投资价值分析报告
- 2024年度电子政务平台建设与维护合同
- 2024至2030年空气过滤组合三联件项目投资价值分析报告
- 培养良好的团队氛围:提高团队凝聚力的技巧
- CSCO-医疗行业肺癌免疫治疗持续用药规范化白皮书:拯救生命的另一半
- 国开2023法律职业伦理-形考册答案
- 预应力钢绞线张拉伸长量计算程序
- 劳动教育智慧树知到课后章节答案2023年下黑龙江建筑职业技术学院
- 国开电大《小学数学教学研究》形考任务2答案
- 医药行业深度研究:国内二类苗市场快速发展期待重磅产品放量及研发加速
- 大班阅读《是谁留下的痕迹》
- 使役态+被动态课件 【知识精讲精研】 高三日语一轮复习
- 当前中小学教师培训的理论、政策及标准解读
- 研学旅行PPT模板
评论
0/150
提交评论