2021年高考数学真题和模拟题分类汇编专题19不等式选讲【含答案】_第1页
2021年高考数学真题和模拟题分类汇编专题19不等式选讲【含答案】_第2页
2021年高考数学真题和模拟题分类汇编专题19不等式选讲【含答案】_第3页
2021年高考数学真题和模拟题分类汇编专题19不等式选讲【含答案】_第4页
2021年高考数学真题和模拟题分类汇编专题19不等式选讲【含答案】_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题19不等式选讲解答题1.(2021•高考全国甲卷•理T23)已知函数.(1)画出和的图像;(2)若,求a的取值范围.(1)可得,画出图像如下:,画出函数图像如下:(2),如图,在同一个坐标系里画出图像,是平移了个单位得到,则要使,需将向左平移,即,当过时,,解得或(舍去),则数形结合可得需至少将向左平移个单位,.2.(2021•高考全国乙卷•文T23)已知函数.(1)当时,求不等式解集;(2)若,求a的取值范围.(1)当时,,表示数轴上的点到和的距离之和,则表示数轴上的点到和的距离之和不小于,故或,所以的解集为.(2)依题意,即恒成立,,故,所以或,解得.所以的取值范围是.3.(2021•河南郑州三模•理T23)已知函数f(x)=|x+1|﹣|2x﹣4|.(Ⅰ)在平面直角坐标系中画出函数f(x)的图象;(Ⅱ)若对∀x∈R,f(x)≤t恒成立,t的最小值为m,且正实数a,b,c满足a+2b+3c=m,求的最小值.(Ⅰ),图象如图所示,(Ⅱ)由(Ⅰ)知,f(x)max=3,则t≥3,故m=3,即a+2b+3c=3,由柯西不等式有,,∴的最小值为3,当且仅当a+c=b+c=1时等号成立.4.(2021•河南开封三模•文理T23)已知函数,g(x)=|x﹣1|.(1)求函数y=f(x)+g(x)的最小值;(2)已知θ∈[0,2π),求关于θ的不等式的解集.(1)由已知可得,当且仅当即时等号成立,所以函数y=f(x)+g(x)的最小值为.(2)由已知,原不等式可化为,①当时,,原不等式化为sinθ﹣cosθ>2,此时无解,②当时,,原不等式化为sinθ+cosθ<﹣1,即,所以,,综上所述,不等式的解集为(π,).5.(2021•河南焦作三模•理T23)已知函数f(x)=|x+1|+|2x﹣5|﹣7.(Ⅰ)在如图所示的网格中画出y=f(x)的图象;(Ⅱ)若当x<1时,f(x)>f(x+a)恒成立,求a的取值范围.(Ⅰ)当x<﹣1时,f(x)=﹣x﹣1﹣2x+5﹣7=﹣3x﹣3,当﹣1≤x≤时,f(x)=x+1﹣2x+5﹣7=﹣x﹣1,当x>时,f(x)=x+1+2x﹣5﹣7=3x﹣11,综上f(x)=,则对应的图象如图:(Ⅱ)当a=0时,不等式不成立,当a<0时,y=f(x)的图象向右平移﹣a个单位得到y=f(x+a)的图象,此时对任意x<1时,y=f(x+a)总在y=f(x)的上方,不满足条件.当a>0时,y=f(x+a)的图象最多平移到与y=f(x)的图象交于点(1,﹣2)的位置,此时a=2,此时a的取值范围是(0,2].6.(2021•四川内江三模•理T23)已知a>0,b>0,4a+b=2ab.(1)求a+b的最小值;(2)若a+b≥|2x﹣1|+|3x+2|对满足题中条件的a,b恒成立,求实数x的取值范围.(1)因为a>0,b>0,所以,所以a+b=(a+b)((4+)=,当且仅当且,即a=,a+b的最小值;(2)若a+b≥|2x﹣2|+|3x+2|对满足题中条件的a,b恒成立,则,当x时,原不等式可化为2x﹣1+4x+2,所以;当时,原不等式可化为﹣2x+4+3x+2,所以,当x时,原不等式可化为﹣2x+8﹣3x﹣2,所以﹣,综上,x的取值范围[﹣].7.(2021•安徽蚌埠三模•文T23)已知函数f(x)=m﹣|x|﹣|x﹣1|,m∈R,且f(x)的最大值为1,(1)求实数m的值;(2)若a>0,b>0,a+b=m,求证:.(1)解:∵|x|+|x﹣1|≥|x﹣(x﹣1)|=1,当x(x﹣1)≤0时取到等号,∴f(x)max=m﹣1=1,∴m=2.(2)证明:由a>0,b>0,a+b=2≥2,∴ab≤1,∴++=+=≥4,当且仅当a=b=1时取等号.8.(2021•贵州毕节三模•文T23)已知函数f(x)=|x+1|+|x﹣2|.(Ⅰ)解不等式f(x)<x+4;(Ⅱ)若k是f(x)的最小值,已知m>0,n>0,且(k+1)m+n=1,求证:k2mn≤m+n.(Ⅰ)f(x)=|x+1|+|x﹣2|=,故当x>2时,f(x)<x+4⇔2x﹣1<x+4,解得:x<5,∴2<x<5.当﹣1≤x≤2时,f(x)<x+4⇔3<x+4,解得x>﹣1,∴﹣1<x≤2.当x<﹣1时,f(x)<x+4⇔﹣2x+1<x+4,解得x>﹣1,∴此时x无解.综上,f(x)<x+4的解集为{x|﹣1<x<5};证明:(Ⅱ)由(Ⅰ)知,f(x)≥3,∴k=3.由(k+1)m+n=1,得4m+n=1,要证k2mn≤m+n,即9mn≤m+n,即证,就是证,又∵m>0,n>0,∵,当且仅当,即时取“=”,∴k2mn≤m+n成立.9.(2021•河南济源平顶山许昌三模•文T23.)已知函数f(x)=|x+2|﹣m|x+1|.(1)若m=﹣2,求不等式f(x)≥8的解集;(2)若关于x的不等式f(x)≤m|x+3|对于任意实数x恒成立,求实数m的取值范围.(1)当m=﹣2时,f(x)=|x+2|+2|x+1|=,当x≤﹣2时,﹣3x﹣4≥8,解得x≤﹣4;当﹣2<x<﹣1时,不等式无解;当x≥﹣1时,3x+4≥8,解得x≥.综上,不等式的解集为(﹣∞﹣4]∪[,+∞).(2)关于x的不等式f(x)≤m|x+3|对于任意实数x恒成立,即为|x+2|≤m(|x+1|+|x+3|),由于|x+1|+|x+3|≥|x+1﹣x﹣3|=2,当且仅当﹣3≤x≤﹣1时,等号成立,所以m≥,记g(x)=,当x≥﹣1时,g(x)==;当x≤﹣3时,g(x)==.则g(x)=,所以g(x)∈[0,],所以m≥,所以实数m的取值范围为[,+∞).10.(2021•四川泸州三模•理T23.)已知函数f(x)=|x+6|﹣|x2﹣2x+2|.(Ⅰ)求不等式f(x)≥6的解集;(Ⅱ)设函数f(x)的最大值为m,正数a,b,c满足a+b+c=+,求证:.(Ⅰ)∵x2﹣2x+2=(x﹣1)2+1>0,∴f(x)=|x+6|﹣x2+2x﹣2,不等式f(x)≥6等价于|x+6|﹣x2+2x﹣2≥6,即或,解得1≤x≤2或∅,∴不等式f(x)≥6的解集为[1,2];(Ⅱ)证明:由(Ⅰ)可知,当时,,∴,又∵a,b,c为正实数,a+b+c=4,∴,∴,当且仅当时等号成立,原命题得证.11.(2021•宁夏中卫三模•理T23.)设函数f(x)=|1﹣2x|﹣3|x+1|,f(x)的最大值为M,正数a,b满足+=Mab.(Ⅰ)求M;(Ⅱ)是否存在a,b,使得a6+b6=?并说明理由.(1)分三类讨论如下:①当x<﹣1时,f(x)=x+4,单调递增,f(x)<3;②当﹣1≤x≤时,f(x)=﹣5x﹣2,单调递减,f(x)max=f(﹣1)=3,③当x>时,f(x)=﹣x﹣4,单调递减,f(x)<f()=﹣,综合以上讨论得,f(x)的最大值M=3;(2)假设存在正数a,b,使得a6+b6=≥2=2a3b3,所以,≤,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①又因为+=Mab=3ab≥2•,所以,≥,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②显然①②相互矛盾,所以,假设不成立,即不存在a,b使得a6+b6=.12.(2021•江西南昌三模•理T23.)已知函数f(x)=|x﹣3|+2|x﹣1|.(Ⅰ)求f(x)的最小值m;(Ⅱ)已知a>0,b≥0,若a+2b=m时,正常数t使得ta+ab的最大值为2,求t的值.(Ⅰ)因为,所以当x=1时,f(x)min=m=2,(Ⅱ)因为m=2,所以a+2b=2,则a+2(b+t)=2t+2,又因为,所以,则,所以,则t=1或t=﹣3(舍),当且仅当a=2(b+1),即a=2,b=0时,等号成立.13.(2021•江西上饶三模•理T23.)已知函数f(x)=|x+2|﹣|x﹣2|.(1)解不等式f(x)≥2;(2)若_____,求a的最小值.①不等式f(x)≥a2+3a有解;②不等式f(x)≥a2+5a恒成立.请从上述两种情形中任选一种作答.(1)f(x)=,因为f(x)≥2,当x≤﹣2时,﹣4≥2不成立,解得x∈∅;当﹣2<x<2时,由2x≥2,得1≤x<2;当x≥2时,由4≥2恒成立,解得当x≥2;综上,f(x)≥2解集为[1,+∞);(2)若选①不等式f(x)≥a2+3a有解,则f(x)max≥a2+3a,由(1)知,f(x)max=4,所以a2+3a﹣4≤0,解得﹣4≤a≤1;所以amin=﹣4;若选②不等式f(x)≥a2+5a恒成立,则f(x)min≥a2+3a,由(1)知,f(x)min=﹣4,所以a2+5a+4≤0,解得﹣4≤a≤﹣1;所以amin=﹣4.14.(2021•安徽宿州三模•文理T23.)已知函数f(x)=|x﹣2|﹣|x+1|.(Ⅰ)求不等式f(x)≤1的解集;(Ⅱ)若函数f(x)的最大值为m,且正实数a,b满足2a+b=m,求证:a2+4b2≥.(Ⅰ)|x﹣2|与|x+1|的零点分别是x=2,x=﹣1,整个定义域被划分成3个区间,分别讨论如下:1)当x≤﹣1时,f(x)=﹣x+2+x+1=3,f(x)≤1的解集为空集∅,2)当﹣1<x≤2时,f(x)=﹣x+2﹣x﹣1=﹣2x+1,﹣2x﹣2x+1≤1,x≤0,取交集得f(x)≤1的解集为[0,2],3)当2<x时,f(x)=x﹣2﹣x﹣1=﹣3,f(x)≤1的解集为[2,+∞),对以上三种情况的结果取并集,不等式f(x)≤1的解集为[0,+∞),(II)证明:分段函数的最值在分段点处取得,由此可以比较函数在三个分段区间上的最大值,取最大者得m=3.由2a+b=3,,原不等式等价于,即17(a2+4b2)≥4(2a+b)2,做差比较证明(a﹣8b)2≥0,这是显然的.15.(2021•安徽马鞍山三模•文理T23.)已知函数f(x)=|2x+3|.(1)解不等式f(x)+f(x﹣3)≤8;(2)已知关于x的不等式f(x)+|x+a|≤x+5,在x∈[﹣1,1]上有解,求实数a的取值范围.(1)函数f(x)=|2x+3|.不等式f(x)≤5﹣f(x﹣3),即|3x+3|+|3x﹣3|≤5,等价于或或,解得:﹣2≤x≤2,所以原不等式的解集为{x|﹣2≤x≤2};(2)当x∈[﹣1,1]时,不等式f(x)+|x+a|≤x+5,即|x+a|≤2﹣x,所以|x+a|≤2﹣x在[﹣1,1]上有解,即﹣2≤a≤2﹣2x在[﹣1,1]上有解,所以﹣2≤a≤4.实数a的取值范围:[﹣2,4].16.(2021•江西九江二模•理T23.)已知函数f(x)=|x+2|﹣|ax﹣2|(a∈R).(Ⅰ)当a=2时,解不等式f(x)≥1;(Ⅱ)当x∈[﹣2,2]时,求证:f(x)+f(﹣x)≤0.(Ⅰ)当a=2时,f(x)≥1即|x+2|﹣|2x﹣2|≥1等价为或或,解得x∈∅或≤x<1或1≤x≤3,所以原不等式的解集为[,3];(Ⅱ)证明:当x∈[﹣2,2]时,f(x)=|x+2|﹣|ax﹣2|=x+2﹣|ax﹣2|,f(﹣x)=2﹣x﹣|ax+2|,f(x)+f(﹣x)=4﹣(|ax﹣2|+|ax+2|),因为|ax﹣2|+|ax+2|≥|ax﹣2﹣(ax+2)|=4,当(ax﹣2)(ax+2)≤0时,取得等号,所以4﹣(|ax﹣2|+|ax+2|)≤0,即f(x)+f(﹣x)≤0.17.(2021•江西上饶二模•理T23.)设函数f(x)=|2x﹣1|﹣|x+1|+2ax,a∈R.(1)若,求不等式f(x)>0的解集;(2)若函数f(x)恰有三个零点,求实数a的取值范围.(1)当a=时,不等式f(x)>0,即|2x﹣1|﹣|x+1|+x>0,则或或,解得x≤﹣1或﹣1<x<0或x>1,∴不等式f(x)>0的解集为(﹣∞,0)∪(1,+∞);(2)由f(x)=|2x﹣1|﹣|x+1|+2ax=0,得|2x﹣1|﹣|x+1|=﹣2ax,设g(x)=|2x﹣1|﹣|x+1|=,h(x)=﹣2ax,如图,要使y=g(x)与y=﹣2ax有3个不同交点,则﹣3<﹣2a<﹣1,即<a<.∴实数a的取值范围是.18.(2021•江西鹰潭二模•理T23.)设x,y,z∈R,z(x+2y)=m.(1)若x2+2y2+3z2的最小值为4,求m的值;(2)若,证明:m≤﹣1或m≥1.(1)x2+2y2+3z2=(x2+z2)+2(y2+z2)≥2xz+4yz=2(xy+2yz),当且仅当x=y=z,上式取得等号,由题意可得2(xy+2yz)=2m=4,∴m=2.(2)证明:∵a2+b2≥2|ab|,∴2(a2+b2)≥(a+b)2,∴,∴|m|≥1,可得m≤﹣1或m≥1.19.(2021•吉林长春一模•文T23.)已知(I)求证:;(Ⅱ)求证:.(1)证明:因为,所以,(当且仅当时取等号)(5分)(2)因为,所以所以,当且仅当时取等号(10分)20.(2021•乌鲁木齐二模•文T23.)已知a,b∈R+,(a﹣b)2=(ab)3,a+b≤2ab.(Ⅰ)求证:a+b≥2ab;(Ⅱ)求a与b的值.(Ⅰ)证明:∵a,b∈R+,(a﹣b)2=(ab)3,∴(a+b)2=(a﹣b)2+4ab=(ab)3+4ab,则a+b≥2ab;(Ⅱ)由(Ⅰ)知,a+b≥2ab,又a+b≤2ab,∴a+b=2ab,又取等号时,(ab)3=4ab,即ab=2,联立,解得或.21.(2021•安徽淮北二模•文T23.)设函数f(x)=|2x﹣a|+|x+|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(1)<4,求实数a的取值范围.(Ⅰ)证明:∵f(x)=|2x﹣a|+|x+|=,∴f(x)在(﹣∞,﹣)单调递减,在[﹣,]单调递减,在(,+∞)上单调递减,∴f(x)min=f()=+≥2,当且仅当x=且a=2时取最小值,∴f(x)≥2;(Ⅱ)∵f(1)=|2﹣a|+|1+|<4(a>0),∴|2﹣a|<3﹣,∴3﹣>0,解得:a>①,当a≤2时,有2﹣a<3﹣,∴a<﹣2或a>1,结合①得:1<a≤2,当a>2时,有a﹣2<3﹣,∴2<a<,综上:实数a的取值范围是(1,).22.(2021•宁夏银川二模•文T23.)已知函数f(x)=|x+a|﹣2|x﹣b|(a>0,b>0).(1)当a=b=1时,解不等式f(x)>0;(2)若函数g(x)=f(x)+|x﹣b|的最大值为2,求的最小值.(1)当a=b=1时,f(x)=|x+1|﹣2|x﹣1|,①当x≤﹣1时,f(x)=﹣(x+1)+2(x﹣1)=x﹣3>0,∴x>3,∴无解,②当﹣1<x<1时,f(x)=(x+1)+2(x﹣1)=3x﹣1>0,∴<x<1,③当x≥1时,f(x)=(x+1)﹣2(x﹣1)=﹣x+3>0,∴1≤x<3,综上所述:不等式f(x)>0的解集为(,3).(2)g(x)=)=|x+a|﹣2|x﹣b|+|x﹣b|=|x+a|﹣|x﹣b|,∵|x+a|/r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论