版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-12.如果用配方法解方程x2-2x-3=0,那么原方程应变形为(A.(x-1)2=4 B.(x+1)2=43.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为A.1或 B.-或 C. D.14.某市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所数据120000000用科学记数法表示为()A.12×108 B.1.2×108 C.1.2×109 D.0.12×1095.二次函数中与的部分对应值如下表所示,则下列结论错误的是()A.B.当时,的值随值的增大而减小C.当时,D.方程有两个不相等的实数根6.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限7.下列方程中,是关于x的一元二次方程的是()A. B. C. D.8.若关于的一元二次方程的一个根是1,则的值为()A.-2 B.1 C.2 D.09.如图,在△ABC中,BC=8,高AD=6,点E,F分别在AB,AC上,点G,F在BC上,当四边形EFGH是矩形,且EF=2EH时,则矩形EFGH的周长为()A. B. C. D.10.如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A. B.2 C. D.11.如图,在中,,,,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.812.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球实验,之后把它放回袋中,搅匀后,再继续摸出一球,记下其颜色,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数49425172232081669833329根据列表,可以估计出m的值是()A.8 B.16 C.24 D.32二、填空题(每题4分,共24分)13.方程的根是_____.14.方程ax2+x+1=0有两个不等的实数根,则a的取值范围是________.15.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是______.16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.17.如图,在矩形中,点为的中点,交于点,连接,下列结论:①;②;③;④若,则.其中正确的结论是______________.(填写所有正确结论的序号)18.如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,的顶点坐标分别为(6,4),(4,0),(2,0).(1)在轴左侧,以为位似中心,画出,使它与的相似比为1:2;(2)根据(1)的作图,=.20.(8分)假期期间,甲、乙两位同学到某影城看电影,影城有《我和我的祖国》(记为)、《中国机长》(记为)、《攀登者》(记为)三部电影,甲、乙两位同学分别从中任选一部观看,每部被选中的可能性相同.用树状图或列表法求甲、乙两位同学选择同一部电影的概率.21.(8分)如图,一条公路的转弯处是一段圆弧.用直尺和圆规作出所在圆的圆心O(要求保留作图痕迹,不写作法);22.(10分)如图,反比例函数的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:(1)图象的另一支在第________象限;在每个象限内,随的增大而________,常数的取值范围是________;(2)若此反比例函数的图象经过点,求的值.23.(10分)某学校打算用篱笆围成矩形的生物园饲养小兔(1)若篱笆的长为16m,怎样围可使小兔的活动范围最大;(2)求证:当矩形的周长确定时,则一边长为周长的时,矩形的面积最大.24.(10分)已知关于x的一元二次方程.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为,,且,求m的值.25.(12分)如图,在中,,点E在边BC上移动(点E不与点B、C重合),满足,且点D、F分别在边AB、AC上.(1)求证:;(2)当点E移动到BC的中点时,求证:FE平分.26.关于的一元二次方程有两个实数根,求的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.2、A【解析】先移项,再配方,即方程两边同时加上一次项系数一般的平方.【详解】解:移项得,x2−2x=3,配方得,x2−2x+1=4,即(x−1)2=4,故选:A.【点睛】本题考查了用配方法解一元二次方程,掌握配方法的步骤是解题的关键.3、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.4、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120000000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、B【分析】根据表中各对应点的特征和抛物线的对称性求出抛物线的解析式即可判断.得出c=3,抛物线的对称轴为x=1.5,顶点坐标为(1,5),抛物线开口向下,【详解】解:由题意得出:,解得,∴抛物线的解析式为:抛物线的对称轴为x=1.5,顶点坐标为(1,5),抛物线开口向下∵a=-1<0,∴选项A正确;∵当时,的值先随值的增大而增大,后随随值的增大而增大,∴选项B错误;∵当时,的值先随值的增大而增大,因此当x<0时,,∴选项C正确;∵原方程可化为,,∴有两个不相等的实数根,选项D正确.故答案为B.【点睛】本题考查的知识点是二次函数的图象与性质,根据题目得出抛物线解析式是解题的关键.6、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,
∴反比例函数y=的图象分布在一、三象限.
故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.7、C【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、a=0,故本选项错误;B、有两个未知数,故本选项错误;C、本选项正确;D、含有分式,不是整式方程,故本选项错误;故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.8、C【分析】根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0
解得:a=1.
故选C.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.9、C【分析】通过证明△AEF∽△ABC,可得,可求EH的长,即可求解.【详解】∵EF∥BC,∴△AEF∽△ABC,∴,∵EF=2EH,BC=8,AD=6,∴∴EH=,∴EF=,∴矩形EFGH的周长=故选:C.【点睛】本题考查了相似三角形的应用,根据相似三角形对应边成比例建立方程是解题的关键.10、D【分析】首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案.【详解】解:∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,
∴tan∠BFE=.故选:D【点睛】此题考查菱形的性质,关键是根据含30°的直角三角形的性质和三角函数解答.11、B【解析】设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,根据图形与圆的性质即可求解.【详解】如图,设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为,∵,,∴∵,∴∵点O是AB的三等分点,∴,,∴,∵⊙O与AC相切于点D,∴,∴,∴,∴,∴MN最小值为,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值,,∴MN长的最大值与最小值的和是1.故选B.【点睛】此题主要考查圆与三角形的性质,解题的关键是熟知圆的性质及直角三角形的性质.12、C【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于,由题意得:,解得:m=24,故选:C.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率,关键是根据黑球的频率得到相应的等量关系.二、填空题(每题4分,共24分)13、0和-4.【分析】根据因式分解即可求解.【详解】解∴x1=0,x2=-4,故填:0和-4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.14、且a≠0【解析】∵方程有两个不等的实数根,∴,解得且.15、【分析】根据正切的定义即可求解.【详解】解:∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα=,∴,∴t=.故答案为:.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.16、1【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案为1.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.17、①③④【分析】根据矩形的性质和余角的性质可判断①;延长CB,FE交于点G,根据ASA可证明△AEF≌△BEG,可得AF=BG,EF=EG,进一步即可求得AF、BC与CF的关系,S△CEF与S△EAF+S△CBE的关系,进而可判断②与③;由,结合已知和锐角三角函数的知识可得,进一步即可根据AAS证明结论④;问题即得解决.【详解】解:∵,,∵四边形ABCD是矩形,∴∠B=90°,∴,,所以①正确;延长CB,FE交于点G,如图,在△AEF和△BEG中,∵∠FAE=∠GBE=90°,AE=BE,∠AEF=∠BEG,∴△AEF≌△BEG(ASA),∴AF=BG,EF=EG,∴S△CEG=S△CEF,∵CE⊥EG,∴CG=CF,∴AF+BC=BG+BC=CG=CF,所以②错误;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正确;若,则,,,在和中,∵∠CEF=∠D=90°,,CF=CF,≌,所以④正确.综上所述,正确的结论是①③④.故答案为:①③④.【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键.18、﹣5<x<1【分析】先根据抛物线的对称性得到A点坐标(1,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c>0的解集.【详解】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(1,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<1.故答案为﹣5<x<1.【点睛】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.三、解答题(共78分)19、(1)见解析;(2)-2【分析】(1)连接AO并延长至,使,同理作出点B,C的对应点,再顺次连接即可;(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可.【详解】(1)如图;(2)根据题意可得出,,,设与x轴的夹角为,∴.【点睛】本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键.20、,见解析【分析】列表法展示所有等可能的结果数,找出甲、乙选择同1部电影的结果数,然后利用概率公式求解.【详解】解:列表如下:由表可知,共有9种等可能结果,其中选择同一部电影的结果为3种,∴(他们选择同一部电影).【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21、见解析.【分析】根据垂径定理的推论可知:弦的垂直平分线过圆心,只需连接AC、BC,尺规作线段AC和BC的垂直平分线,其交点即为所求.【详解】解:如图所示:圆心O即为圆弧所在圆的圆心.【点睛】本题考查了尺规作线段的垂直平分线和垂径定理,属于基础题型,熟练掌握垂径定理和线段垂直平分线的尺规作图是关键.22、(1)故答案为四;增大;;(2).【分析】(1)根据反比例函数的图象特点即可得;(2)将点代入反比例函数的解析式即可得.【详解】(1)由反比例函数的图象特点得:图象的另一支在第四象限;在每个象限内,y随x的增大而增大由反比例函数的性质可得:,解得故答案为:四;增大;;(2)把代入得到:,则故m的值为.【点睛】本题考查了反比例函数的图象特点、反比例函数的性质,熟记函数的图象特点和性质是解题关键.23、(1)4;(2)证明见详解.【分析】(1)设长为x,面积为y,利用矩形的面积求法得出y与x之间的函数关系式进行分析即可;(2)设周长为4m,一边长为x,面积为y,列出关系式进行验证求证即可.【详解】解:(1)长为x,宽为8-x,列关系式为,配方可得,可得当x=4时,面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于文员实习日记模板合集七篇
- 《品牌导向战略》课件
- 2024年度云计算服务深度合作与运营管理合同
- 2024年丙丁双方关于航空物流服务平台建设与运营合同
- 新学期的总结范文(30篇)
- 心理健康演讲稿范文8篇
- 幼师公开课心得体会
- 志存高远演讲稿
- 新高考研修心得5篇
- 高中物理教学计划
- 关于合同违约扣款的函件
- 苏州2024年江苏苏州市市属事业单位招聘笔试及笔试历年典型考题及考点附答案解析
- NB-T33004-2013电动汽车充换电设施工程施工和竣工验收规范
- 2024版劳动合同合同范本
- 古希腊文明智慧树知到期末考试答案章节答案2024年复旦大学
- 摇滚音乐课程教案
- 小学数学一年级上册数学试卷可直接打印
- 2024年中国邮政集团有限公司校园招聘考试试题参考答案
- DZ∕T 0258-2014 多目标区域地球化学调查规范(1:250000)(正式版)
- 消防工作协作与配合总结
- 《新疆工程勘察设计计费导则(2022版)》
评论
0/150
提交评论