2023届北京七中学九年级数学上册期末检测试题含解析_第1页
2023届北京七中学九年级数学上册期末检测试题含解析_第2页
2023届北京七中学九年级数学上册期末检测试题含解析_第3页
2023届北京七中学九年级数学上册期末检测试题含解析_第4页
2023届北京七中学九年级数学上册期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,是的内切圆,切点分别是、,连接,若,则的度数是()A. B. C. D.2.对于方程,下列说法正确的是()A.一次项系数为3 B.一次项系数为-3C.常数项是3 D.方程的解为3.下列各数中是无理数的是()A.0 B. C. D.0.54.下列y和x之间的函数表达式中,是二次函数的是()A. B. C. D.y=x-35.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为()A.1 B.2 C. D.6.如图,AD是的一条角平分线,点E在AD上.若,,则与的面积比为()A.1:5 B.5:1 C.3:20 D.20:37.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃8.如图,将两张长为10,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么,菱形周长的最大值为()A. B. C. D.219.二次函数的图象的顶点坐标是()A. B. C. D.10.已知点(﹣3,a),(3,b),(5,c)均在反比例函数y=的图象上,则有()A.a>b>c B.c>b>a C.c>a>b D.b>c>a11.已知则()A. B. C. D.12.若与的相似比为1:4,则与的周长比为()A.1:2 B.1:3 C.1:4 D.1:16二、填空题(每题4分,共24分)13.随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________.14.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.15.已知点P是线段AB的黄金分割点,PA>PB,AB=4cm,则PA=____cm.16.若一个三角形的两边长分别是4和6,第三边的长是方程x2﹣17x+60=0的一个根,则该三角形的第三边长是_____.17.如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为_____.18.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′=______.三、解答题(共78分)19.(8分)如图,是的弦,于,交于,若,求的半径.20.(8分)已知二次函数y=2x2+4x+3,当﹣2≤x≤﹣1时,求函数y的最小值和最大值,如图是小明同学的解答过程.你认为他做得正确吗?如果正确,请说明解答依据,如果不正确,请写出你得解答过程.21.(8分)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.22.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?23.(10分)如图,顶点为P(2,﹣4)的二次函数y=ax2+bx+c的图象经过原点,点A(m,n)在该函数图象上,连接AP、OP.(1)求二次函数y=ax2+bx+c的表达式;(2)若∠APO=90°,求点A的坐标;(3)若点A关于抛物线的对称轴的对称点为C,点A关于y轴的对称点为D,设抛物线与x轴的另一交点为B,请解答下列问题:①当m≠4时,试判断四边形OBCD的形状并说明理由;②当n<0时,若四边形OBCD的面积为12,求点A的坐标.24.(10分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.25.(12分)在一个三角形中,如果有一边上的中线等于这条边的一半,那么就称这个三角形为“智慧三角形”.(1)如图1,已知、是⊙上两点,请在圆上画出满足条件的点,使为“智慧三角形”,并说明理由;(2)如图2,是等边三角形,,以点为圆心,的半径为1画圆,为边上的一动点,过点作的一条切线,切点为,求的最小值;(3)如图3,在平面直角坐标系中,⊙的半径为1,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,求出此时点的坐标.26.如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.(1)、求证:△ABE≌△ADF;(2)、若等边△AEF的周长为6,求正方形ABCD的边长.

参考答案一、选择题(每题4分,共48分)1、C【分析】由已知中∠A=100°,∠C=30°,根据三角形内角和定理,可得∠B的大小,结合切线的性质,可得∠DOE的度数,再由圆周角定理即可得到∠DFE的度数.【详解】解:∠B=180°−∠A−∠C=180−100°−30°=50°

∠BDO+∠BEO=180°

∴B、D、O、E四点共圆

∴∠DOE=180°−∠B=180°−50°=130°

又∵∠DFE是圆周角,∠DOE是圆心角

∠DFE=∠DOE=65°

故选:C.【点睛】本题考查的知识点是圆周角定理,切线的性质,其中根据切线的性质判断出B、D、O、E四点共圆,进而求出∠DOE的度数是解答本题的关键.2、B【分析】先把方程化为一元二次方程的一般形式,再求出其一次项系数、二次项系数及常数项即可.【详解】∵原方程可化为2x2−3x=0,∴一次项系数为−3,二次项系数为2,常数项为0,方程的解为x=0或x=,故选:B.【点睛】本题考查的是一元二次方程的一般形式,熟知一元二次方程ax2+bx+c=0(a≠0)中,ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项是解答此题的关键.3、C【分析】根据无理数的定义,分别进行判断,即可得到答案.【详解】解:根据题意,是无理数;0,,0.5是有理数;故选:C.【点睛】本题考查了无理数的定义,解题的关键是熟记无理数的定义进行解题.4、A【分析】根据二次函数的定义(一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数)进行判断.【详解】A.可化为,符合二次函数的定义,故本选项正确;B.,该函数等式右边最高次数为3,故不符合二次函数的定义,故本选项错误;C.,该函数等式的右边是分式,不是整式,不符合二次函数的定义,故本选项错误;D.y=x-3,属于一次函数,故本选项错误.故选:A.【点睛】本题考查了二次函数的定义.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,化简后最高次必须为二次,且二次项系数不为0.5、C【分析】连接OC,BC,过点O作OD⊥AC于D,可得OD//BC,利用平行线段成比例可知和AD=,利用勾股定理,可得,列出方程,即可求出OD的长.【详解】解:连接OC,BC,过点O作OD⊥AC于D,∴∠ADO=90°,∵AB为的直径,AB=4,,∴∠ACB=90°,OA=OC=,∴OD//BC,∴,∴AD=,在中,,∴,解得OD=;故选C.【点睛】本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键.6、C【分析】根据已知条件先求得S△ABE:S△BED=3:2,再根据三角形相似求得S△ACD=S△ABE=S△BED,根据S△ABC=S△ABE+S△ACD+S△BED即可求得.【详解】解:∵AE:ED=3:2,

∴AE:AD=3:5,

∵∠ABE=∠C,∠BAE=∠CAD,

∴△ABE∽△ACD,

∴S△ABE:S△ACD=9:25,

∴S△ACD=S△ABE,

∵AE:ED=3:2,

∴S△ABE:S△BED=3:2,

∴S△ABE=S△BED,

∴S△ACD=S△ABE=S△BED,

∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,

∴S△BDE:S△ABC=3:20,

故选:C.【点睛】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.7、C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】解:A、抛一枚硬币,出现正面朝上的频率是=0.5,故本选项错误;B、从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数频率约为:==0.5,故本选项错误;C、从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球概率是=≈0.33,故本选项正确;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是=0.25,故本选项错误;故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.8、C【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在Rt△ABC中,由勾股定理:x2=(10﹣x)2+22,解得:x=,∴4x=,即菱形的最大周长为cm.故选:C.【点睛】此题考查矩形的性质,本题的解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.9、B【分析】根据二次函数的性质,用配方法求出二次函数顶点式,再得出顶点坐标即可.【详解】解:∵抛物线

=(x+1)2+3

∴抛物线的顶点坐标是:(−1,3).

故选B.【点睛】此题主要考查了利用配方法求二次函数顶点式以及求顶点坐标,此题型是考查重点,应熟练掌握.10、D【分析】根据反比例函数系数k2+1大于0,得出函数的图象位于第一、三象限内,在各个象限内y随x的增大而减小,据此进行解答.【详解】解:∵反比例函数系数k2+1大于0,∴函数的图象位于第一、三象限内,在各个象限内y随x的增大而减小,∵﹣3<0,0<3<5,∴点(﹣3,a)位于第三象限内,点(3,b),(5,c)位于第一象限内,∴b>c>a.故选:D.【点睛】本题主要考查反比例函数的图象和性质,解答本题的关键是确定反比例函数的系数大于0,并熟练掌握反比例函数的性质,此题难度一般.11、A【解析】根据特殊角的三角函数值求解即可.【详解】∵,∴,故选:A.【点睛】本题考查了特殊角的三角函数值,比较简单,熟记特殊角的三角函数值是解题的关键.12、C【分析】根据相似三角形的性质解答即可.【详解】解:∵与的相似比为1:4,∴与的周长比为:1:4.故选:C.【点睛】本题考查了相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.二、填空题(每题4分,共24分)13、【分析】需要三步完成,所以采用树状图法比较简单,根据树状图可以求得所有等可能的结果与出现三次正面朝上的情况,再根据概率公式求解即可.【详解】画树状图得:∴一共有共8种等可能的结果;出现3次正面朝上的有1种情况.∴出现3次正面朝上的概率是故答案为.点评:此题考查了树状图法概率.注意树状图法可以不重不漏地表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.14、3【分析】由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.【详解】∵四边形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案为3.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.15、2-2【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为:(2-2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般.16、1【分析】根据三角形两边之和大于第三边,两边之差小于第三边,结合一元二次方程相关知识进行解题即可.【详解】解:∵x2﹣17x+60=0,∴(x﹣1)(x﹣12)=0,解得:x1=1,x2=12,∵三角形的两边长分别是4和6,当x=12时,6+4<12,不能组成三角形.∴这个三角形的第三边长是1.故答案为:1.【点睛】本题考查了三角形的三边关系和一元二次方程的求解,熟悉三角形三边关系是解题关键.17、40°或70°或100°.【分析】根据旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.先连结AP,如图,由旋转的性质得OP=OB,则可判断点P、C在以AB为直径的圆上,利用圆周角定理得∠BAP=∠BOP=α,∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,然后分类讨论:当AP=AC时,∠APC=∠ACP,即90°﹣α=70°;当PA=PC时,∠PAC=∠ACP,即α+20°=90°﹣α,;当CP=CA时,∠CAP=∠CAP,即α+20°=70°,再分别解关于α的方程即可.【详解】连结AP,如图,∵点O是AB的中点,∴OA=OB,∵OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,∴OP=OB,∴点P在以AB为直径的圆上,∴∠BAP=∠BOP=α,∠APC=∠ABC=70°,∵∠ACB=90°,∴点P、C在以AB为直径的圆上,∴∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,当AP=AC时,∠APC=∠ACP,即90°﹣α=70°,解得α=40°;当PA=PC时,∠PAC=∠ACP,即α+20°=90°﹣α,解得α=70°;当CP=CA时,∠CAP=∠CPA,即α+20°=70°,解得α=100°,综上所述,α的值为40°或70°或100°.故答案为40°或70°或100°.考点:旋转的性质.18、3【分析】根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.【详解】解:根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案为.【点睛】本题考查了图形的旋转变化,旋转得到的图形与原图形全等,解答时要分清旋转角和对应线段.三、解答题(共78分)19、5.【分析】连接OB,由垂径定理得BE=CE=4,在中,根据勾股定理列方程求解.【详解】解:连接设的半径为,则在中,由勾股定理得,即解得的半径为【点睛】本题考查了圆的垂径定理,利用勾股定理列方程求解是解答此题的关键.20、错误,见解析【分析】根据二次函数的性质和小明的做法,可以判断小明的做法是否正确,然后根据二次函数的性质即可解答本题.【详解】解:小明的做法是错误的,正确的做法如下:∵二次函数y=2x2+4x+1=2(x+1)2+1,∴该函数图象开口向上,该函数的对称轴是直线x=﹣1,当x=﹣1时取得最小值,最小值是1,∵﹣2≤x≤﹣1,∴当x=﹣2时取得最大值,此时y=1,当x=﹣1时取得最小值,最小值是y=1,由上可得,当﹣2≤x≤﹣1时,函数y的最小值是1,最大值是1.【点睛】本题考查二次函数的性质,关键在于熟记性质.21、(1);(2)10元;(3)x为12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;(3)根据题意得到,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,,故y与x的函数关系式为;(2)根据题意得,,解得:,(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,,,∴当时,w随x的增大而增大,当时,,答:当x为12时,日销售利润最大,最大利润960元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.22、10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.23、(1)y=x2﹣4x;(2)A(,﹣);(3)①平行四边形,理由见解析;②A(1,﹣3)或A(3,﹣3).【分析】(1)由已知可得抛物线与x轴另一个交点(4,0),将(2,﹣4)、(4,0)、(0,0)代入y=ax2+bx+c即可求表达式;(2)由∠APO=90°,可知AP⊥PO,所以m﹣2=,即可求A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),可得CD∥OB,CD=CB,所以四边形OBCD是平行四边形;②四边形由OBCD是平行四边形,,所以12=4×(﹣n),即可求出A(1,﹣3)或A(3,﹣3).【详解】解:(1)∵图象经过原点,∴c=0,∵顶点为P(2,﹣4)∴抛物线与x轴另一个交点(4,0),将(2,﹣4)和(4,0)代入y=ax2+bx,∴a=1,b=﹣4,∴二次函数的解析式为y=x2﹣4x;(2)∵∠APO=90°,∴AP⊥PO,∵A(m,m2﹣4m),∴m﹣2=,∴m=,∴A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),∴CD∥OB,∵CD=4,OB=4,∴四边形OBCD是平行四边形;②∵四边形OBCD是平行四边形,,∴12=4×(﹣n),∴n=﹣3,∴A(1,﹣3)或A(3,﹣3).【点睛】本题考查了二次函数与几何综合问题,涉及二次函数求解析式、直角三角形、平行四边形等知识点,解题的关键是灵活运用上述知识点进行推导求解.24、⊙O的半径为.【解析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.25、(1)见解析;(2);(1)或【分析】(1)连接AO并且延长交圆于,连接AO并且延长交圆于,即可求解;

(2)根据MN为⊙/r/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论