2022年山西省大同市矿区数学九年级上册期末复习检测模拟试题含解析_第1页
2022年山西省大同市矿区数学九年级上册期末复习检测模拟试题含解析_第2页
2022年山西省大同市矿区数学九年级上册期末复习检测模拟试题含解析_第3页
2022年山西省大同市矿区数学九年级上册期末复习检测模拟试题含解析_第4页
2022年山西省大同市矿区数学九年级上册期末复习检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.7000(1+x2)=23170 B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170 D.7000+7000(1+x)+7000(1+x)2=23172.如图,在正方形ABCD中,H是对角线BD的中点,延长DC至E,使得DE=DB,连接BE,作DF⊥BE交BC于点G,交BE于点F,连接CH、FH,下列结论:(1)HC=HF;(2)DG=2EF;(3)BE·DF=2CD2;(4)S△BDE=4S△DFH;(5)HF∥DE,正确的个数是()A.5 B.4 C.3 D.23.已知x=-1是关于x的方程2ax2+x-a2=0的一个根,则a的值是()A.1 B.-1 C.0 D.无法确定4.对于反比例函数,下列说法不正确的是A.图象分布在第二、四象限B.当时,随的增大而增大C.图象经过点(1,-2)D.若点,都在图象上,且,则5.如图,点M为反比例函数y=上的一点,过点M作x轴,y轴的垂线,分别交直线y=-x+b于C,D两点,若直线y=-x+b分别与x轴,y轴相交于点A,B,则AD·BC的值是()A.3 B.2 C.2 D.6.在圆,平行四边形、函数的图象、的图象中,既是轴对称图形又是中心对称图形的个数有()A.0 B.1 C.2 D.37.将二次函数化为的形式,结果为()A. B.C. D.8.如图为二次函数的图象,在下列说法中:①;②方程的根是,;③④当时,随的增大而减小.不正确的说法有()A.① B.①② C.①③ D.②④9.下列图形,既是轴对称图形又是中心对称图形的是()A.正三角形 B.正五边形 C.等腰直角三角形 D.矩形10.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm11.二次函数y=x2-2x+4A.y=(x-1)2C.y=(x-2)212.关于反比例函数,下列说法不正确的是()A.y随x的增大而减小 B.图象位于第一、三象限C.图象关于直线对称 D.图象经过点(-1,-5)二、填空题(每题4分,共24分)13.如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线,,是与水平线垂直的两根支柱,米,米,米.(1)如图1,为了安全美观,准备拆除支柱、,在水平线上另找一点作为地面上的支撑点,用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_________.(2)如图2,在水平线上增添一张米长的椅子(在右侧),用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_______________.14.关于x的方程x2﹣x﹣m=0有两个不相等实根,则m的取值范围是__________.15.已知:在⊙O中,直径AB=4,点P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,则弦PQ的长为_____.16.如图,tan∠1=____________.17.如图,将沿方向平移得到,与重叠部分(即图中阴影部分)的面积是面积的,若,则平移的距离是__________.,18.用一个圆心角90°,半径为8㎝的扇形纸围成一个圆锥,则该圆锥底面圆的半径为.三、解答题(共78分)19.(8分)小明、小亮两人用如图所示的两个分隔均匀的转盘做游戏:分别转动两个转盘,转盘停止后,将两个指针所指数字相加(若指针恰好停在分割线上,则重转一次).如果这两个数字之和小于8(不包括8),则小明获胜;否则小亮获胜。(1)利用列表法或画树状图的方法表示游戏所有可能出现的结果;(2)这个游戏对双方公平吗?请说明理由.20.(8分)已知抛物线y=ax2+2x﹣(a≠0)与y轴交于点A,与x轴的一个交点为B.(1)①请直接写出点A的坐标;②当抛物线的对称轴为直线x=﹣4时,请直接写出a=;(2)若点B为(3,0),当m2+2m+3≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,求m的值;(3)已知点C(﹣5,﹣3)和点D(5,1),若抛物线与线段CD有两个不同的交点,求a的取值范围.21.(8分)如图一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(n,﹣1),B(,﹣4)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)若点C坐标为(0,2),求△ABC的面积.22.(10分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DEx轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.23.(10分)如图,为了测得旗杆AB的高度,小明在D处用高为1m的测角仪CD,测得旗杆顶点A的仰角为45°,再向旗杆方向前进10m,又测得旗杆顶点A的仰角为60°,求旗杆AB的高度.24.(10分)定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.25.(12分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.26.如图,∠MAN=90°,,分别为射线,上的两个动点,将线段绕点逆时针旋转到,连接交于点.(1)当∠ACB=30°时,依题意补全图形,并直接写出的值;(2)写出一个∠ACB的度数,使得,并证明.

参考答案一、选择题(每题4分,共48分)1、C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x,则2020年的投入为7000(1+x)2=23170由题意,得7000(1+x)2=23170.故选:C.【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.2、B【解析】由等腰三角形“三线合一”的性质可得EF=BF,根据H是正方形对角线BD的中点可得CH=DH=BH,即可证明HF是△BDE的中位线,可得HF=DE,HF//DE;由BD=DE即可得HC=HF;利用直角三角形两锐角互余的关系可得∠CBE=∠CDG,利用ASA可证明△BCE≌△DCG,可得DG=BE,可判定DG=2EF,由正方形的性质可得BD2=2CD2,根据∠CBE=∠CDG,∠E是公共角可证明△BCE∽△DFE,即可得,即BE·DF=DE·BC,可对③进行判定,根据等底等高的三角形面积相等可对④进行判定,综上即可得答案.【详解】∵BD=DE,DF⊥BE,∴EF=BF,∵H是正方形ABCD对角线BD的中点,∴CH=DH=BH=BD,∴HF是△BDE的中位线,∴HF=DE=BD=CH,HF//DE,故①⑤正确,∵∠CBE+∠E=90°,∠FDE+∠E=90°,∴∠CBE=∠FDE,又∵CD=BC,∠DCG=∠BCE=90°,∴△BCE≌△DCG,∴DG=BE,∵BE=2EF,∴DG=2EF,故②正确,∵∠CBE=∠FDE,∠E=∠E,∴△BCE∽△DFE,∴,即BE·DF=DE·BC,∵BD2=CD2+BC2=2CD2∴DE2=2CD2,∴DE·BC≠2CD2,∴BE·DF≠2CD2,故③错误,∵DH=BD,∴S△DFH=S△DFB,∵BF=BE,∴S△DFB=S△BDE,∴S△DFH=S△BDE,即S△BDE=4S△DFH,故④正确,综上所述:正确的结论有①②④⑤,共4个,故选B.【点睛】本题考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及三角形中位线的性质,综合性较强,熟练掌握所学性质及定理是解题关键.3、A【分析】根据一元二次方程解的定义,把x=-1代入2ax2+x-a2=0得到关于a的方程,然后解此方程即可.【详解】解:∵x=-1是关于x的方程2ax2+x-a2=0的一个根,∴2a-1-a2=0∴1-2a+a2=0,∴a1=a2=1,∴a的值为1故选:A【点睛】本题考查一元二次方程的解和解一元二次方程,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型4、D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵,∴点(1,−2)在它的图象上,故本选项正确;D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.5、C【分析】设点M的坐标为(),将代入y=-x+b中求出C点坐标,同理求出D点坐标,再根据两点之间距离公式即可求解.【详解】解:设点M的坐标为(),将代入y=-x+b中,得到C点坐标为(),将代入y=-x+b中,得到D点坐标为(),∵直线y=-x+b分别与x轴,y轴相交于点A,B,∴A点坐标(0,b),B点坐标为(b,0),∴AD×BC=,故选:C.【点睛】本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.6、C【分析】根据轴对称图形又是中心对称图形的定义和函数图象,可得答案.【详解】解:圆是轴对称图形又是中心对称图形;

平行四边形是中心对称图形,不是轴对称图形;

函数y=x2的图象是轴对称图形,不是中心对称图形;的图象是中心对称图形,是轴对称图形;

故选:C.【点睛】本题考查了反比例函数和二次函数的图象,利用了轴对称,中心对称的定义.7、D【分析】化,再根据完全平方公式分解因式即可.【详解】∵∴故选D.【点睛】解答本题的关键是熟练掌握完全平方公式:,注意当二次项系数为1时,常数项等于一次项系数一半的平方.8、A【分析】根据二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系逐个判断即可.【详解】二次函数的图象的开口向下,与y轴正半轴相交,则①不正确二次函数的对称轴为,与x轴的一个交点为与x轴的另一个交点为方程的根是,则②正确二次函数的图象上,所对应的点位于第一象限,即,则③正确由二次函数的图象可知,当时,随的增大而减小,则④正确综上,不正确的说法只有①故选:A.【点睛】本题考查了二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系,掌握理解并灵活运用函数的性质是解题关键.9、D【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、D【分析】证明△CAB∽△CDE,然后利用相似比得到DE的长.【详解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用,用相似三角形对应边的比相等的性质求物体的高度.11、B【解析】试题分析:设原正方形的边长为xm,依题意有:(x﹣1)(x﹣2)=18,故选C.考点:由实际问题抽象出一元二次方程.12、A【分析】根据反比例函数的图像及性质逐个分析即可.【详解】解:选项A:要说成在每一象限内y随x的增大而减小,故选项A错误;选项B:,故图像经过第一、三象限,所以选项B正确;选项C:反比例函数关于直线对称,故选项C正确;选项D:将(-1,-5)代入反比例函数中,等号两边相等,故选项D正确.故答案为:A.【点睛】本题考查了反比例函数的性质;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.二、填空题(每题4分,共24分)13、【分析】(1)以点O为原点,OC所在直线为y轴,垂直于OC的直线为x轴建立平面直角坐标系,利用待定系数法确定二次函数的解析式后延长BD到M使MD=BD,连接AM交OC于点P,则点P即为所求;利用待定系数法确定直线M'A'的解析式,从而求得点P′的坐标,从而求得O、P之间的距离;(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.【详解】(1)如图建立平面直角坐标系(以点为原点,所在直线为轴,垂直于的直线为轴),延长到使,连接交于点,则点即为所求.设抛物线的函数解析式为,由题意知旋转后点的坐标为.带入解析式得抛物线的函数解析式为:,当时,,点的坐标为,点的坐标为代入,求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.点的坐标为,点坐标为代入,,的坐标求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中整理出二次函数模型,利用二次函数的知识解决生活中的实际问题.14、m>﹣【分析】根据根的判别式,令△>0,即可计算出m的值.【详解】∵关于x的方程x2﹣x﹣m=0有两个不相等实根,∴△=1﹣4×1×(﹣m)=1+4m>0,解得m>﹣.故答案为﹣.【点睛】本题考查了一元二次方程系数的问题,掌握根的判别式是解题的关键.15、2或1【分析】当点P和Q在AB的同侧,如图1,连接OP、OQ、PQ,先计算出∠PAQ=30°,根据圆周角定理得到∠POQ=60°,则可判断△OPQ为等边三角形,从而得到PQ=OP=2;当点P和Q在AB的同侧,如图1,连接PQ,先计算出∠PAQ=90°,根据圆周角定理得到PQ为直径,从而得到PQ=1.【详解】解:当点P和Q在AB的同侧,如图1,连接OP、OQ、PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=30°,∴∠POQ=2∠PAQ=2×30°=60°,∴△OPQ为等边三角形,∴PQ=OP=2;当点P和Q在AB的同侧,如图1,连接PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=90°,∴PQ为直径,∴PQ=1,综上所述,PQ的长为2或1.故答案为2或1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16、【分析】由圆周角定理可知∠1=∠2,再根据锐角三角函数的定义即可得出结论.【详解】解:∵∠1与∠2是同弧所对的圆周角,故答案为【点睛】本题考查的是圆周角定理,熟知同弧所对的圆周角相等是解答此题的关键.17、【分析】与相交于点,因为平移,由此求出,从而求得【详解】解:由沿方向平移得到,【点睛】本题考查了平移的性质,以及相似三角形的性质.18、1.【解析】试题分析:扇形的弧长是:,设底面半径是,则,解得.故答案是:1.考点:圆锥的计算.三、解答题(共78分)19、(1)12种情况;(2)不公平,小亮获胜概率大【分析】(1)依据题意先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.

(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可【详解】解:(1)利用列表法的方法表示游戏所有可能出现的结果如下表:∴共有12种情况;(2)游戏不公平P(小明获胜)=,P(小亮获胜)=,∴不公平,小亮获胜概率大.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)①;②;(2);(1)a>或a<﹣1.【分析】(1)①令x=0,由抛物线的解析式求出y的值,便可得A点坐标;②根据抛物线的对称轴公式列出a的方程,便可求出a的值;(2)把B点坐标代入抛物线的解析式,便可求得a的值,再结合已知条件am<0,得m的取值范围,再根据二次函数的性质结合条件当m2+2m+1≤x≤m2+2m+5时,抛物线最低点的纵坐标为,列出m的方程,求得m的值,进而得出m的准确值;(1)用待定系数法求出CD的解析式,再求出抛物线的对称轴,进而分两种情况:当a>0时,抛物线的顶点在y轴左边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线上方,顶点在CD下方,根据这一条件列出a不等式组,进行解答;当a<0时,抛物线的顶点在y轴的右边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线下方,抛物线的顶点必须在CD上方,据此列出a的不等式组进行解答.【详解】(1)①令x=0,得,∴,故答案为:;②∵抛物线的对称轴为直线x=﹣4,∴,∴a=,故答案为:;(2)∵点B为(1,0),∴9a+6﹣=0,∴a=﹣,∴抛物线的解析式为:,∴对称轴为x=﹣2,∵am<0,∴m>0,∴m2+2m+1>1>﹣2,∵当m2+2m+1≤x≤m2+2m+5时,y随x的增大而减小,∵当m2+2m+1≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,∴,整理得(m2+2m+5)2﹣4(m2+2m+5)﹣12=0,解得,m2+2m+5=6,或m2+2m+5=﹣2(△<0,无解),∴,∵m>0,∴;(1)设直线CD的解析式为y=kx+b(k≠0),∵点C(﹣5,﹣1)和点D(5,1),∴,∴,∴CD的解析式为,∵y=ax2+2x﹣(a≠0)∴对称轴为,①当a>0时,,则抛物线的顶点在y轴左侧,∵抛物线与线段CD有两个不同的交点,∴,∴;②当a<0时,,则抛物线的顶点在y轴左侧,∵抛物线与线段CD有两个不同的交点,∴,∴a<﹣1,综上,或a<﹣1.【点睛】本题为二次函数综合题,难度较大,解题时需注意用待定系数法求出CD的解析式,再求出抛物线的对称轴,要分两种情况进行讨论.21、(1)y=﹣;(2)y=2x﹣5;(3).【分析】(1)把点B代入解析式求解即可;(2)求出A点的坐标,然后代入解析式求解即可;(3)求出点D的坐标,根据S△ABC=S△ACD﹣S△BCD求解即可;【详解】解:(1)∵一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(n,﹣1),B(,﹣4)两点.∴m=×(﹣4)=﹣2,∴反比例函数的解析式y=﹣;(2)把A(n,﹣1)代入y=﹣得﹣1=﹣,∴n=2,∴A(2,﹣1),∵次函数y=kx+b的图象经过A(2,﹣1),B(,﹣4),∴,解得:,∴一次函数解析式y=2x﹣5;(3)设一次函数解析式y=2x﹣5图象交y轴为点D∴D(0,﹣5)∵C(0,2),∵S△ABC=S△ACD﹣S△BCD∴S△ABC=.【点睛】本题主要考查了一次函数与反比例函数的综合应用,准确计算是解题的关键.22、(1)m>-1;(2)y=-x+3,y=-x2+2x+3;(3)D(),DF=【分析】(1)利用判别式解答即可;(2)将点A的坐标代入抛物线y=-x2+2x+m即可求出解析式,由抛物线的解析式求出点B(3,0),设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入y=kx+b中即可求出直线BC的解析式;(3)由点D在抛物线上,设坐标为(x,-x2+2x+3),F在直线AB上,坐标为(x,-x+3),得到DF=-x2+2x+3-(-x+3)=-x2+3x=,利用顶点式解析式的性质解答即可.【详解】(1)当抛物线与x轴有两个交点时,∆>0,即4+4m>0,∴m>-1;(2)∵点A(-1,0)在抛物线y=-x2+2x+m上,∴-1-2+m=0,∴m=3,∴抛物线解析式为y=-x2+2x+3,且C(0,3),当x=0时,-x2+2x+3=0,解得x=-1,或x=3,∴B(3,0),设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入y=kx+b中,得:,解得,∴直线AB的解析式为y=-x+3;(3)点D在抛物线上,设坐标为(x,-x2+2x+3),F在直线AB上,坐标为(x,-x+3),∴DF=-x2+2x+3-(-x+3)=-x2+3x=,∴当时,DF最大,为,此时D的坐标为().【点睛】此题考查了利用判别式已知抛物线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论