版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,⊙O的半径为5,将长为8的线段PQ的两端放在圆周上同时滑动,如果点P从点A出发按逆时针方向滑动一周回到点A,在这个过程中,线段PQ扫过区域的面积为()A.9π B.16π C.25π D.64π2.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是103.计算的值为()A.1 B.C. D.4.设a、b是两个整数,若定义一种运算“△”,a△b=a2+b2+ab,则方程(x+2)△x=1的实数根是()A.x1=x2=1 B.x1=0,x2=1C.x1=x2=﹣1 D.x1=1,x2=﹣25.如图,平行四边形的顶点,在轴上,顶点在上,顶点在上,则平行四边形的面积是()A. B. C. D.6.已知是关于的反比例函数,则()A. B. C. D.为一切实数7.如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1 B. C.2 D.48.如图,这个几何体的左视图是()A. B. C. D.9.关于x的一元二次方程ax2﹣4x+1=0有实数根,则整数a的最大值是()A.1 B.﹣4 C.3 D.410.若关于x的一元二次方程有实数根,则实数k的取值范围为A.,且 B.,且C. D.11.如图,在中,,将在平面内绕点旋转到的位置,使,则旋转角的度数为()A. B. C. D.12.方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.5二、填空题(每题4分,共24分)13.如图,已知正方形ABCD的边长为1,点M是BC边上的动点(不与B,C重合),点N是AM的中点,过点N作EF⊥AM,分别交AB,BD,CD于点E,K,F,设BM=x.(1)AE的长为______(用含x的代数式表示);(2)设EK=2KF,则的值为______.14.在△ABC中,分别以AB,AC为斜边作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,连接DE.若DE=5,则BC长为_____.15.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.16.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是___________.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.17.数学课上,老师在投影屏上出示了下列抢答题,需要回答横线上符号代表的内容◎代表__________________,@代表_________________。18.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On与直线l相切.设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=________.三、解答题(共78分)19.(8分)(问题发现)如图1,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是;(问题探究)如图2所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°.新区管委会想在路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,即分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.显然,为了快捷环保和节约成本,就要使线段PE、EF、FP之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF周长的最小值为km;(拓展应用)如图3是某街心花园的一角,在扇形OAB中,∠AOB=90°,OA=12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在上.现准备沿CE、DE从入口到出口铺设两条景观小路,在四边形CODE内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.请问:在上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.20.(8分)某商城销售一种进价为10元1件的饰品,经调查发现,该饰品的销售量(件)与销售单价(元)满足函数,设销售这种饰品每天的利润为(元).(1)求与之间的函数表达式;(2)当销售单价定为多少元时,该商城获利最大?最大利润为多少?(3)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,该商城应将销售单价定为多少?21.(8分)据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈西尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”大意如下:如图,今有山位于树的西面.山高为未知数,山与树相距里,树高丈尺,人站在离树里的处,观察到树梢恰好与山峰处在同一斜线上,人眼离地尺,问山AB的高约为多少丈?(丈尺,结果精确到个位)22.(10分)用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣1.(2)x2+5x﹣4=2.23.(10分)如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.(1)求直线的解析式.(2)点为直线下方抛物线上的一点,连接,.当的面积最大时,连接,,点是线段的中点,点是线段上的一点,点是线段上的一点,求的最小值.(3)点是线段的中点,将抛物线与轴正方向平移得到新抛物线,经过点,的顶点为点,在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.24.(10分)解方程:x2﹣6x﹣7=1.25.(12分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.26.已知一次函数的图象与轴和轴分别交于、两点,与反比例函数的图象分别交于、两点.(1)如图,当,点在线段上(不与点、重合)时,过点作轴和轴的垂线,垂足为、.当矩形的面积为2时,求出点的位置;(2)如图,当时,在轴上是否存在点,使得以、、为顶点的三角形与相似?若存在,求出点的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求的值.
参考答案一、选择题(每题4分,共48分)1、B【分析】如图,线段PQ扫过的面积是图中圆环面积.作OE⊥PQ于E,连接OQ求出OE即可解决问题.【详解】解:如图,线段PQ扫过的面积是图中圆环面积,作OE⊥PQ于E,连接OQ.∵OE⊥PQ,∴EQ=PQ=4,∵OQ=5,∴OE=,∴线段PQ扫过区域的面积=π•52﹣π•32=16π,故选:B.【点睛】本题主要考查了轨迹,解直角三角形,垂径定理,解题的关键是理解题意,学会添加常用辅助线.2、B【解析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.3、B【解析】逆用同底数幂的乘法和积的乘方将式子变形,再运用平方差公式计算即可.【详解】解:故选B.【点睛】本题考查二次根式的运算,高次幂因式相乘往往是先设法将底数化为积为1或0的形式,然后再灵活选用幂的运算法则进行化简求值.4、C【解析】根据题中的新定义将所求方程化为普通方程,整理成一般形式,左边化为完全平方式,用直接开平方的方法解方程即可.【详解】解:∵a△b=a2+b2+ab,∴(x+2)△x=(x+2)2+x2+x(x+2)=1,整理得:x2+2x+1=0,即(x+1)2=0,解得:x1=x2=﹣1.故选:C.【点睛】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到方程右边,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.5、D【分析】先过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,再根据反比例函数系数k的几何意义,求得△ABE的面积=△COD的面积相等=|k2|,△AOE的面积=△CBD的面积相等=|k1|,最后计算平行四边形的面积.【详解】解:过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,根据∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE与S△COD相等,又∵点C在的图象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四边形OABC的面积=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故选D.【点睛】本题主要考查了反比例函数系数k的几何意义,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.6、B【分析】根据题意得,,即可解得m的值.【详解】∵是关于的反比例函数∴解得故答案为:B.【点睛】本题考查了反比例函数的性质以及定义,掌握反比例函数的指数等于是解题的关键.7、C【分析】如图,延长FH交AB于点M,由BE=2AE,DF=2FC,G、H分别是AC的三等分点,证明EG//BC,FH//AD,进而证明△AEG∽△ABC,△CFH∽△CAD,进而证明四边形EHFG为平行四边形,再根据平行四边形的面积公式求解即可.【详解】如图,延长FH交AB于点M,∵BE=2AE,DF=2FC,AB=AE+BE,CD=CF+DF,∴AE:AB=1:3,CF:CD=1:3,又∵G、H分别是AC的三等分点,∴AG:AC=CH:AC=1:3,∴AE:AB=AG:AC,CF:CD=CH:CA,∴EG//BC,FH//AD,∴△AEG∽△ABC,△CFH∽△CDA,BM:AB=CF:CD=1:3,∠EMH=∠B,∴EG:BC=AE:AB=1:3,HF:AD=CF:CD=1:3,∵四边形ABCD是矩形,AB=3,BC=6,∴CD=AB=3,AD=BC=6,∠B=90°,∴AE=1,EG=2,CF=1,HF=2,BM=1,∴EM=3-1-1=1,EG=FH,∴EGFH,∴四边形EHFG为平行四边形,∴S四边形EHFG=2×1=2,故选C.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,平行四边形的判定与性质,熟练掌握和灵活运用相关内容是解题的关键.8、B【解析】根据三视图概念即可解题.【详解】解:因为物体的左侧高,所以会将右侧图形完全遮挡,看不见的直线要用虚线代替,故选B.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.9、D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=16﹣4a≥0且a≠0,∴a≤4且a≠0,所以a的最大值为4,故选:D.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.10、A【解析】∵原方程为一元二次方程,且有实数根,∴k-1≠0且△=62-4×(k-1)×3=48-12k≥0,解得k≤4,∴实数k的取值范围为k≤4,且k≠1,故选A.11、D【分析】根据旋转的性质得出,利用全等三角形的性质和平行线的性质得出,即可得出答案.【详解】根据题意可得∴又∴∴∴故答案选择D.【点睛】本题考查的是旋转和全等,难度适中,解题关键是根据图示找出旋转角.12、B【分析】根据根与系数的关系得出方程的两根之和为,即可得出选项.【详解】解:方程x2﹣6x+5=0的两个根之和为6,故选:B.【点睛】本题考查了根与系数的关系,解决问题的关键是熟练正确理解题意,熟练掌握一元二次方程根与系数的关系.二、填空题(每题4分,共24分)13、x【分析】(1)根据勾股定理求得AM,进而得出AN,证得△AEN∽△AMB,由相似三角形的性质即可求得AE的长;(2)连接AK、MG、CK,构建全等三角形和直角三角形,证明AK=MK=CK,再根据四边形的内角和定理得∠AKM=90°,利用直角三角形斜边上的中线等于斜边的一半得NK=AM=AN,然后根据相似三角形的性质求得==x,即可得出=x.【详解】(1)解:∵正方形ABCD的边长为1,BM=x,∴AM=,∵点N是AM的中点,∴AN=,∵EF⊥AM,∴∠ANE=90°,∴∠ANE=∠ABM=90°,∵∠EAN=∠MAB,∴△AEN∽△AMB,∴=,即=,∴AE=,故答案为:;(2)解:如图,连接AK、MG、CK,由正方形的轴对称性△ABK≌△CBK,∴AK=CK,∠KAB=∠KCB,∵EF⊥AM,N为AM中点,∴AK=MK,∴MK=CK,∠KMC=∠KCM,∴∠KAB=∠KMC,∵∠KMB+∠KMC=180°,∴∠KMB+∠KAB=180°,又∵四边形ABMK的内角和为360°,∠ABM=90°,∴∠AKM=90°,在Rt△AKM中,AM为斜边,N为AM的中点,∴KN=AM=AN,∴=,∵△AEN∽△AMB,∴==x,∴=x,故答案为:x.【点睛】本题是四边形的综合题,考查了正方形的性质,相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的性质,以及直角三角形斜边.上的中线的性质,证得KN=
AN是解题的关键.14、1【分析】由在Rt△ABD和Rt△ACE中,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,可证得△ABD∽△ACE,AD=AB,继而可证得△ABC∽△ADE,然后由相似三角形的对应边成比例,求得答案.【详解】∵∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,∴△ABD∽△ACE,AD=AB,∴∠BAD=∠CAE,AB:AC=AD:AE,∴∠BAC=∠DAE,AB:AD=AC:AE,∴△ABC∽△ADE,∴=2,∵DE=5,∴BC=1.故答案为:1.【点睛】此题考查了相似三角形的判定与性质以及含30度角的直角三角形.此题难度适中,注意掌握数形结合思想的应用.15、1:4【解析】由S△BDE:S△CDE=1:3,得到
,于是得到
.【详解】解:两个三角形同高,底边之比等于面积比.故答案为【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.16、①②④【解析】连接OM,由切线的性质可得OM⊥PC,继而得OM∥AC,再根据平行线的性质以及等边对等角即可求得∠CAM=∠OAM,由此可判断①;通过证明△ACM∽△AMB,根据相似三角形的对应边成比例可判断②;求出∠MOP=60°,利用弧长公式求得的长可判断③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,继而可得PB=OB=AO,PD=DM=CM,进而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的长,可得CM=DM=DP=,由此可判断④.【详解】连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC•AB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为,故③错误;∵BD⊥PC,AC⊥PC,OM⊥PC,∴BD∥AC//OM,∴△PBD∽△PAC,∴,∴PB=PA,又∵AO=BO,AO+BO=AB,AB+PB=PA,∴PB=OB=AO,又∵BD∥AC//OM,∴PD=DM=CM,∴OM=2BD=2,在Rt△PBD中,PB=BO=OM=2∴PD==,∴CM=DM=DP=,故④正确,故答案为①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.17、∠EFC内错角【分析】根据图形,结合三角形外角的性质、等量代换、平行线的判定即可将解答补充完整.【详解】证明:延长BE交DC于点F,则(三角形的外角等于与它不相邻的两个内角之和).又,得,故(内错角相等,两直线平行).故答案为:∠EFC;内错角.【点睛】本题考查了三角形外角的性质、平行线的判定,通过作辅助线,构造内错角证明平行,及有效地进行等量代换是证明的关键.18、1【解析】分别作O1A⊥l,O2B⊥l,O3C⊥l,如图,
∵半圆O1,半圆O2,…,半圆On与直线L相切,
∴O1A=r1,O2B=r2,O3C=r3,
∵∠AOO1=30°,
∴OO1=2O1A=2r1=2,
在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,
∴r2=3,
在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,
∴r3=9=32,
同理可得r4=27=33,
所以r2018=1.
故答案为1.点睛:找规律题需要记忆常见数列1,2,3,4……n1,3,5,7……2n-12,4,6,8……2n2,4,8,16,32……1,4,9,16,25……2,6,12,20……n(n+1)一般题目中的数列是利用常见数列变形而来,其中后一项比前一项多一个常数,是等差数列,列举找规律.后一项是前一项的固定倍数,则是等比数列,列举找规律.三、解答题(共78分)19、[问题发现]15;[问题探究];[拓展应用]①出口E设在距直线OB的7.1米处可以使四边形CODE的面积最大为60平方米,②出口E距直线OB的距离为米.【分析】[问题发现]△PAB的底边AB一定,面积最大也就是P点到AB的距离最大,故当OP⊥AB时,时最大,值是5,再计算此时△PAB面积即可;[问题探究]先由对称将折线长转化线段长,即分别以、所在直线为对称轴,作出关于的对称点为,关于的对称点为,连接,易求得:,而,即当最小时,可取得最小值.[拓展应用]①四边形CODE面积=S△CDO+S△CDE′,求出S△CDE′面积最大时即可;②先利用相似三角形将费用问题转化为CE+1DE=CE+QE,求CE+QE的最小值问题.然后利用相似三角形性质和勾股定理求解即可。【详解】[问题发现]解:当OP⊥AB时,时最大,,此时△APB的面积=,故答案为:15;[问题探究]解:如图1-1,连接,,分别以、所在直线为对称轴,作出关于的对称点为,关于的对称点为,连接,交于点,交于点,连接、,,,,,、、在以为圆心,为半径的圆上,设,易求得:,,,,当最小时,可取得最小值,,,即点在上时,可取得最小值,如图1-1,如图1-3,设的中点为,,,,,,由勾股定理可知:,,,是等边三角形,,由勾股定理可知:,,,的最小值为.故答案为:[拓展应用]①如图,作OG⊥CD,垂足为G,延长OG交于点E′,则此时△CDE的面积最大.∵OA=OB=11,AC=4,点D为OB的中点,∴OC=8,OD=6,在Rt△COD中,CD=10,OG=4.8,∴GE′=11-4.8=7.1,∴四边形CODE面积的最大值为S△CDO+S△CDE′=×6×8+×10×7.1=60,作E′H⊥OB,垂足为H,则E′H=OE′=×11=7.1.答:出口E设在距直线OB的7.1米处可以使四边形CODE的面积最大为60平方米.②铺设小路CE和DE的总造价为100CE+400DE=100(CE+1DE).如图,连接OE,延长OB到点Q,使BQ=OB=11,连接EQ.在△EOD与△QOE中,∠EOD=∠QOE,且,∴△EOD∽△QOE,故QE=1DE.于是CE+1DE=CE+QE,问题转化为求CE+QE的最小值.连接CQ,交于点E′,此时CE+QE取得最小值为CQ,在Rt△COQ中,CO=8,OQ=14,∴CQ=8,故总造价的最小值为1600.作E′H⊥OB,垂足为H,连接OE′,设E′H=x,则QH=3x,在Rt△E′OH中,,解得(舍去),∴出口E距直线OB的距离为米.【点睛】本题考查圆的综合问题,涉及轴对称的性质,勾股定理,垂径定理,解直角三角形等知识,综合程度极高,需要学生灵活运用知识.解题关键是:利用对称或相似灵活地将折线长和转化为线段长,从而求折线段的最值。20、(1);(2)销售单价为30时,该商城获利最大,最大利润为800元;(3)单价定为25元【分析】(1)利用利润=每件的利润×数量即可表示出与之间的函数表达式;(2)根据二次函数的性质即可求出最大值;(3)令,求出x值即可.【详解】解:(1)(2)由(1)知,∵,∴当时,有最大值,最大值为800元即销售单价为30时,该商城获利最大,最大利润为800元.(3)令,即解得或因为要确保顾客得到优惠所以不符合题意,舍去所以在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,该商城应将销售单价定为25元【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质是解题的关键.21、由的高约为丈.【分析】由题意得里,尺,尺,里,过点作于点,交于点,得尺,里,里,根据相似三角形的性质即可求出.【详解】解:由题意得里,尺,尺,里.如图,过点作于点,交于点.则尺,里,里,,∴△ECH∽△EAG,,丈,丈.答:由的高约为丈.【点睛】此题主要考查了相似三角形在实际生活中的应用,能够将实际问题转化成相似三角形是解题的关键.22、(1)x=2.5或x=2;(2)x=.【分析】(1)利用因式分解法求解可得;
(2)利用公式法求解可得.【详解】解:(1)∵x(2x﹣5)﹣2(2x﹣5)=2,∴(2x﹣5)(x﹣2)=2,则2x﹣5=2或x﹣2=2,解得x=2.5或x=2;(2)∵a=1,b=5,c=﹣4,∴△=52﹣4×1×(﹣4)=41>2,则x=.【点睛】本题考查因式分解法、公式法解一元二次方程,解题的关键是掌握因式分解法、公式法解一元二次方程.23、(1);(2)3;(3)存在,点Q的坐标为或或或.【解析】【分析】(1)求出点A、B、E的坐标,设直线的解析式为,将点A和点E的坐标代入即可;(2)先求出直线CE解析式,过点P作轴,交CE与点F,设点P的坐标为,则点F,从而可表示出△EPC的面积,利用二次函数性质可求出x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M,当点O、N、M、H在一条直线上时,KM+MN+NK有最小值,最小值=GH,利用勾股定理求出GH即可;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为三种情况讨论求解即可.【详解】解:(1)当时,设直线的解析式为,将点A和点E的坐标代入得解得所以直线的解析式为.(2)设直线CE的解析式为,将点E的坐标代入得:解得:直线CE的解析式为如图,过点P作轴,交CE与点F设点P的坐标为,则点F则FP=∴当时,△EPC的面积最大,此时如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、MK是CB的中点,OD=1,OC=3K是BC的中点,∠OCB=60°
点O与点K关于CD对称点G与点O重合∴点G(0,0)点H与点K关于CP对称∴点H的坐标为当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH
的最小值为3.(3)如图经过点D,的顶点为点F∴点点G为CE的中点,当FG=FQ时,点或当GF=GQ时,点F与点关于直线/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级下册数学整百整十数加减法教学计划
- 家庭健康安全定制计划
- 酒店员工第一季度工作计划
- 2024学年第二学期六年级数学教学工作计划
- 高三英语教师个人期末工作总结高三英语教师工作计划
- 二年级下册数学教学计划锦集
- 2024年幼儿园中班班主任工作计划范文
- 2021大学保安队长工作计划
- 有关教师个人培训计划锦集
- 行政文员个人工作总结
- 中国神话故事绘本嫘祖的传说
- 哲学与人生第12课《实现人生价值》12.2
- 微创冠脉搭桥手术
- 新古典经济学中的神经经济学理论
- 变译的七种变通手段
- 人教八年级英语大单元作业设计
- 工程建设监理收费标准(发改价格【2007】670号)
- 货物包装承诺函
- 企业资质代办服务方案投标技术方案技术标
- 2024-2029年中国折扣商店行业市场发展前瞻及投资战略研究报告
- 护理部副主任竞聘
评论
0/150
提交评论