2022年内蒙古鄂尔多斯市鄂托克旗九年级数学上册期末统考模拟试题含解析_第1页
2022年内蒙古鄂尔多斯市鄂托克旗九年级数学上册期末统考模拟试题含解析_第2页
2022年内蒙古鄂尔多斯市鄂托克旗九年级数学上册期末统考模拟试题含解析_第3页
2022年内蒙古鄂尔多斯市鄂托克旗九年级数学上册期末统考模拟试题含解析_第4页
2022年内蒙古鄂尔多斯市鄂托克旗九年级数学上册期末统考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.2.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A. B. C. D.3.如图,二次函数的图象经过点,,下列说法正确的是()A. B.C. D.图象的对称轴是直线4.如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3π B.6π C.9π D.12π5.如图所示,△ABC内接于⊙O,∠C=45°.AB=4,则⊙O的半径为()A. B.4C. D.56.下列图形中,既是中心对称图形,又是轴对称图形的是()A.等边三角形 B.平行四边形 C.等腰三角形 D.菱形7.如图,点A、B、C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,∠ACD的度数为()A.10° B.15° C.20° D.30°8.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为()A. B. C. D.9.如图,⊙O中,点D,A分别在劣弧BC和优弧BC上,∠BDC=130°,则∠BOC=()A.120° B.110° C.105° D.100°10.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球二、填空题(每小题3分,共24分)11.如图,点G是△ABC的重心,过点G作GE//BC,交AC于点E,连结GC.若△ABC的面积为1,则△GEC的面积为____________.12.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.13.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同,则该商品每次降价的百分率为_____.14.在平面直角坐标系中,直线y=x-2与x轴、y轴分别交于点B、C,半径为1的⊙P的圆心P从点A(4,m)出发以每秒个单位长度的速度沿射线AC的方向运动,设点P运动的时间为t秒,则当t=_____秒时,⊙P与坐标轴相切.15.如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;按照这个规律进行下去,点的横坐标为_____(结果用含正整数的代数式表示)16.如图所示,矩形的边在的边上,顶点,分别在边,上.已知,,,设,矩形的面积为,则关于的函数关系式为______.(不必写出定义域)17.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.18.将方程化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为____.三、解答题(共66分)19.(10分)如图,已知的三个顶点的坐标分别为、、,P(a,b)是△ABC的边AC上一点:(1)将绕原点逆时针旋转90°得到,请在网格中画出,旋转过程中点A所走的路径长为.(2)将△ABC沿一定的方向平移后,点P的对应点为P2(a+6,b+2),请在网格画出上述平移后的△A2B2C2,并写出点A2、的坐标:A2().(3)若以点O为位似中心,作△A3B3C3与△ABC成2:1的位似,则与点P对应的点P3位似坐标为(直接写出结果).20.(6分)如图,在Rt△ABC中,∠C=90°,点O是斜边AB上一定点,到点O的距离等于OB的所有点组成图形W,图形W与AB,BC分别交于点D,E,连接AE,DE,∠AED=∠B.(1)判断图形W与AE所在直线的公共点个数,并证明.(2)若,,求OB.21.(6分)阅读材料,回答问题:材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案(3)请直接写出题2的结果.22.(8分)(1)计算:;(2)解方程:x2+3x—4=0.23.(8分)已知:如图,⊙O的直径AB与弦CD相交于点E,且E为CD中点,过点B作CD的平行线交弦AD的延长线于点F.(1)求证:BF是⊙O的切线;(2)连结BC,若⊙O的半径为2,tan∠BCD=,求线段AD的长.24.(8分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.求、之间的路程;请判断此出租车是否超过了城南大道每小时千米的限制速度?25.(10分)如图,这是一个小正方体所搭几何体的俯视图,正方形中的数字表示在该位置小正方体的个数.请你画出它的主视图和左视图.26.(10分)(1)计算:tan31°sin61°+cos231°-tan45°(2)解方程:x2﹣2x﹣1=1.

参考答案一、选择题(每小题3分,共30分)1、A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.2、A【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为.【详解】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,

∴共比赛场数为,

故选:A.【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3、D【分析】根据二次函数的图像与性质即可求解.【详解】由图象可知图象与y轴交点位于y轴正半轴,故c>0.A选项错误;函数图象与x轴有两个交点,所以>0,B选项错误;观察图象可知x=-1时y=a-b+c>0,所以a-b+c>0,C选项错误;根据图象与x轴交点可知,对称轴是(1,0).(5,0)两点的中垂线,,x=3即为函数对称轴,D选项正确;故选D【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像.4、B【解析】分析:直接利用弧长公式计算得出答案.详解:的展直长度为:=6π(m).故选B.点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.5、A【解析】试题解析:连接OA,OB.∴在中,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.6、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,针对每一个选项进行分析.【详解】解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,也是中心对称图形.故此选项正确;故选D.7、C【分析】根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据外角求得∠ACD的度数.【详解】解:∵∠A=50°,

∴∠BOC=2∠A=100°,

∵∠B=30°,∠BOC=∠B+∠BDC,

∴∠BDC=∠BOC-∠B=100°-30°=70°,∴∠ACD=70°50°=20°;故选:C.【点睛】本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.8、C【分析】由AC是⊙的切线可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,则∠BDO=40最后由∠AOD=∠OBD+∠OBD计算即可.【详解】解:∵AC是⊙的切线∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.9、D【分析】根据圆内接四边形的性质,对角互补可知,∠D+∠BAC=180°,求出∠D,再利用圆周角定理即可得出.【详解】解:∵四边形ABDC为圆内接四边形∴∠A+∠BDC=180°∵∠BDC=130°∴∠A=50°∴∠BOC=2∠A=100°故选:D.【点睛】本题考查了圆内接四边形的性质,圆周角定理,掌握圆内接四边形的性质是解题的关键.10、B【解析】根据事件的类型特点及性质进行判断.【详解】A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选B.【点睛】本题考查的是随机事件的特性,熟练掌握随机事件的特性是本题的解题关键.二、填空题(每小题3分,共24分)11、【分析】如图,延长AG交BC于D,利用相似三角形的面积比等于相似比的平方解决问题即可.【详解】解:连接AG并延长交BC于点D,∴D为BC中点∴又∵∴∵G为重心∴∴∴,又∵∴.【点睛】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12、.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=3.∵正方形的中心在原点O,∴直线AB的解析式为:x=2.∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).∵点P在反比例函数(k>0)的图象上,∴k=2×3=2.∴此反比例函数的解析式为:.13、10%【解析】设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1-降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论.【详解】设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.故答案为:10%【点睛】本题考查了一元二次方程的应用,解题的关键是根据数量关系得出关于x的一元二次方程.14、1,3,5【分析】设⊙P与坐标轴的切点为D,根据一次函数图象上点的坐标特征可得出点A、B、C的坐标,即可求出AB、AC的长,可得△OBC是等腰直角三角形,分⊙P只与x轴相切、与x轴、y轴同时相切、只与y轴相切三种情况,根据切线的性质和等腰直角三角形的性质分别求出AP的长,即可得答案.【详解】设⊙P与坐标轴的切点为D,∵直线y=x-2与x轴、y轴分别交于点B、C,点A坐标为(4,m),∴x=0时,y=-2,y=0时,x=2,x=4时,y=2,∴A(4,2),B(2,0),C(0,-2),∴AB=2,AC=4,OB=OC=2,∴△OBC是等腰直角三角形,∠OBC=45°,①如图,当⊙P只与x轴相切时,∵点D为切点,⊙P的半径为1,∴PD⊥x轴,PD=1,∴△BDP是等腰直角三角形,∴BD=PD=1,∴BP=,∴AP=AB-BP=,∵点P的速度为个单位长度,∴t=1,②如图,⊙P与x轴、y轴同时相切时,同①得PB=,∴AP=AB+PB=3,∵点P的速度为个单位长度,∴t=3.③如图,⊙P只与y轴相切时,同①得PB=,∴AP=AC+PB=5,∵点P的速度为个单位长度,∴t=5.综上所述:t的值为1、3、5时,⊙P与坐标轴相切,故答案为:1,3,5【点睛】本题考查切线的性质及一次函数图象上点的坐标特征,一次函数图象上的点的坐标都适合该一次函数的解析式;圆的切线垂直于过切点的直径;熟练掌握切线的性质是解题关键.15、【解析】过点分别作轴,轴,轴,轴,轴,……垂足分别为,根据题意求出,得到图中所有的直角三角形都相似,两条直角边的比都是可以求出点的横坐标为:,再依次求出……即可求解.【详解】解:过点分别作轴,轴,轴,轴,轴,……垂足分别为点在直线上,点的横坐标为,点的纵坐标为,即:图中所有的直角三角形都相似,两条直角边的比都是点的横坐标为:,点的横坐标为:点C3的横坐标为:点的横坐标为:点的横坐标为:故答案为:【点睛】本题考查的是规律,熟练掌握相似三角形的性质是解题的关键.16、【分析】易证得△ADG∽△ABC,那么它们的对应边和对应高的比相等,可据此求出AP的表达式,进而可求出PH即DE、GF的长,已知矩形的长和宽,即可根据矩形的面积公式得到y、x的函数关系式;【详解】如图,作AH为BC边上的高,AH交DG于点P,∵AC=6,AB=8,BC=10,∴三角形ABC是直角三角形,∴△ABC的高==4.8,∵矩形DEFG的边EF在△ABC的边BC上,∴DG∥BC,∴△ADG∽△ABC,∵AH⊥BC,∴AP⊥DG∴,∴,∴∴PH=,∴故答案为:【点睛】本题考查了相似三角形的判定与性质,二次函数的应用,解题的关键是利用相似三角形的性质求出矩形的边长.17、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【点睛】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18、5,.【分析】一元二次方程化为一般形式后,找出一次项系数与常数项即可.【详解】解:方程整理得:,则一次项系数、常数项分别为5,;故答案为:5,.【点睛】此题考查了一元二次方程的一般形式,其一般形式为.三、解答题(共66分)19、(1)画图见解析,π;(2)画图见解析,(4,4);(3)P3(2a,2b)或P3(-2a,-2b)【解析】(1)分别得出△ABC绕点O逆时针旋转90º后的对应点得到的位置,进而得到旋转后的得到,而点A所走的路径长为以O为圆心,以OA长为半径且圆心角为90°的扇形弧长;(2)由点P的对应点为P2(a+6,b+2)可知△ABC向右平移6个单位长度,再向上平移2个单位长度,即可得到的△A2B2C2;(3)以位似比2:1作图即可,注意有两个图形,与点P对应的点P3的坐标是由P的横、纵坐标都乘以2或-2得到的.【详解】解:(1)如图所示,∵∴点A所走的路径长为:故答案为π(2)∵由点P的对应点为P2(a+6,b+2)∴△A2B2C2是△ABC向右平移6个单位长度,再向上平移2个单位长度可得到的,∴点A对应点A2坐标为(4,4)△A2B2C2如图所示,(3)∵P(a,b)且以点O为位似中心,△A3B3C3与△ABC的位似比为2:1∴P3(2a,2b)或P3(-2a,-2b)△A3B3C3如图所示,20、(2)有一个公共点,证明见解析;(2).【分析】(2)先根据题意作出图形W,再作辅助线,连接OE,证明AE是圆O的切线即可;(2)先利用解直角三角形的知识求出CE=2,从而求出BE=2.再由AC∥DE得出,把各线段的长代入即可求出OB的值.【详解】(2)判断有一个公共点证明:连接OE,如图.∵BD是⊙O的直径,∴∠DEB=90°.∵OE=OB,∴∠OEB=∠B.又∵∠AED=∠B,∴∠AED=∠OEB.∴∠AEO=∠AED+∠DEO=∠OEB+∠DEO=∠DEB=90°.∴AE是⊙O的切线.∴图形W与AE所在直线有2个公共点.(2)解:∵∠C=90°,,,∴AC=2,.∵∠DEB=90°,∴AC∥DE.∴∠CAE=∠AED=B.在Rt△ACE中,∠C=90°,AC=2,∴CE=2.∴BE=2.∵AC∥DE∴.∴,∴.【点睛】本题考查了圆的综合知识,掌握相关知识并灵活运用是解题的关键.21、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).【解析】试题分析:题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球;(2)写出方案;(3)直接写结果即可.试题解析:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:.题2:列表得:

锁1

锁2

钥匙1

(锁1,钥匙1)

(锁2,钥匙1)

钥匙2

(锁1,钥匙2)

(锁2,钥匙2)

钥匙3

(锁1,钥匙3)

(锁2,钥匙3)

所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3).考点:随机事件.22、(1);(2)或.【分析】(1)利用零负指数幂法则计算以及利用特殊角的三角函数值计算即可;(2)利用因式分解法求出解即可.【详解】(1)=;2)解:x2+3x—4=0解得或.【点睛】本题考查实数的运算,以及解一元二次方程-因式分解法,熟练掌握运算法则是解本题的关键.23、(1)见解析;(2)【分析】(1)由垂径定理可证AB⊥CD,由CD∥BF,得AB⊥BF,则BF是⊙O的切线;(2)连接BD,根据同弧所对圆周角相等得到∠BCD=∠BAD,再利用圆的性质得到∠ADB=90°,tan∠BCD=tan∠BAD=,得到BD与AD的关系,再利用解直角三角形可以得到BD、AD与半径的关系,进一步求解即可得到答案.【详解】(1)证明:∵⊙O的直径AB与弦CD相交于点E,且E/r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论